% PLESK

Plesk Modules

Programming Guide

(Revision 1.2)

‘% SWSOFT

(c) 1999 - 2006

ISBN: N/A

SWsoft, Inc.

13755 Sunrise Valley Drive
Suite 325

Herndon

VA 20171 USA

Phone: +1 (703) 815 5670
Fax: +1 (703) 815 5675

Copyright © 1999-2006 by SWsoft, Inc. All rights reserved

Distribution of this work or derivative of this work in any form is prohibited unless prior written permission is
obtained from the copyright holder.

Linux is a registered trademark of Linus Torvalds.

ASPLinux and the ASPLinux logo are registered trademarks of SWsoft, Inc.

RedHat is a registered trademark of Red Hat Software, Inc.

Solaris is a registered trademark of Sun Microsystems, Inc.

X Window System is a registered trademark of X Consortium, Inc.

UNIX is a registered trademark of The Open Group.

Intel, Pentium, and Celeron are registered trademarks of Intel Corporation.

MS Windows, Windows 2003 Server, Windows XP, Windows 2000, Windows NT, Windows 98, and Windows 95
are registered trademarks of Microsoft Corporation.

IBM DB2 is a registered trademark of International Business Machines Corp.

SSH and Secure Shell are trademarks of SSH Communications Security, Inc.

MegaRAID is a registered trademark of American Megatrends, Inc.

PowerEdge is a trademark of Dell Computer Corporation.

Request Tracker is a trademark of Best Practical Solutions, LLC

All other trademarks and copyrights referred to are the property of their respective owners.

Contents

Preface 4
DOCUMENTATION CONMVENTIONS.viieiitii ettt ettt e et e sttt e e s ettt e e et et e e sb et e e s sabeeesasbeeessabeaeesasbeeessstesesasresssssrenas 4
TypographiCal CONVENTIONSccuiiiiiiieie sttt sttt sttt b e bbb et b e e e et esaeebenbeebeebe e e enee s 4
[STcT0 [T T TR 5

Plesk Modules 6
L) (o1 6

L@ Y=Y AV 11T 7
How a Module Builds into PIeSK ArChItECIUIEccvvviivee ittt 9
Plesk Modules SUPPOrt ArCNITECIUNEciiviiiirieiite e 15
CreatiNg IMOGUIES.......ccuiiiiieieieee ettt bbbttt b etk b et b bt et b et et b e 19
What Code MaKes UpP @ MOGUIEoviiiiiiiiie et e 19
Programming GUIEeouioiiieie ettt sttt sttt b et e se e e et e b b e sbe st ene e e eneeee 21
YN o I =] =] (T oL TSR 45
MOAUIES APT FUNCHIONS ...ttt ettt ettt e s st e s st essabessbessabesssbassabasssbassabesases 45

Y [0 0] F=T AN o IO Fo Tt TR 66

CHAPTER 1

Preface

In This Chapter

DocumMENtation CONVENTIONScoiiiieiieiie ettt ettt te e ste e sbe e sbeesbeesbaesrbeetreebeenreens 4
Typographical CONVENTIONSc.eiiiiiiiirieite et 4
FREADACK ...ttt et e et e e et e e ebe e e sabe e e bae e eabe e sabe e e ebeeesaraeans 5

Documentation Conventions

Before you start using this guide, it is important to understand the documentation conventions

used in it.

Typographical Conventions

The following kinds of formatting in the text identify special information.

Formatting convention Type of Information Example

Special Bold Items you must select, such as Go to the QoS tab.
menu options, command
buttons, or items in a list.

Titles of chapters, sections, and Read the Basic Administration
subsections. chapter.

Italics Used to emphasize the The system supports the so called
importance of a point, to wildcard character search.
introduce a term or to designate
a command line placeholder,
which is to be replaced with a
real name or value.

Monospace The names of commands, files, The license file is located in the
and directories. httpdocs/common/licens

es directory.

Preformatted On-screen computer output in # 1s —al /files

Preformatted Bold

CAPITALS

your command-line sessions;
source code in XML, C++, or
other programming languages.

What you type, contrasted with
on-screen computer output.

Names of keys on the keyboard.

total 14470

cd /root/rpms/php

SHIFT, CTRL, ALT

KEY+KEY Key combinations for which the ~ CTRL+P, ALT+F4
user must press and hold down
one key and then press another.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this guide better, we
would love to hear from you!

If you have a suggestion for improving the documentation (or any other relevant comments), try
to be as specific as possible when formulating it. If you have found an error, please include the
chapter/section/subsection name and some of the surrounding text so that we could find it

easily.

Please submit a report by e-mail to userdocs@swsoft.com.

mailto:userdocs@swsoft.com

CHAPTER 2

Plesk Modules

This guide is written for the programmers who would like to implement a kind of a plug-in for
Plesk for UNIX/Linux.

= Section Basics presents the plug-in technology of Plesk. This part of documentation shows
the difference between various Plesk-specific extension techniques, explains the tenets of
Plesk modules architecture, and touches upon the facilities provided by Plesk for better
integration with Plesk modules.

= Section Creating Modules can serve as a guide on creating Plesk modules from scratch.
This section sets the programming task, gives step-by-step instructions for implementing all
parts of the module's code, and explains how to create a distribution package ready for
commercial use.

= Section API Reference presents the Modules API that can be used for creating a module
fully compliant with Plesk.

In This Chapter

B ST CS .ttt ettt e —tte et teee e ———tteeeee e e ———eteeeteaaa———ataeetaaar————aaaaas 6

Creating MOAUIES ..ottt st ere et sae e e e 18

YA 2] =] (=] (o7 IR 45
Basics

This chapter states the concepts of Plesk plug-in technology known as Plesk Modules:

= Overview shows the purpose of modules in Plesk architecture, explains the difference
between modules and other ways of extending the logic of Plesk, and shows why modules
are more useful for the customer.

= Section How a Module Builds into Plesk Architecture gives a common idea of what a
module presents, how it is structured, and how this structure mounts in the file and folder
structure of Plesk.

= The Plesk Modules Support Architecture section explains how Plesk supports modules and
what internal mechanisms of Plesk are involved. This section specifies the boundary
between the area of Plesk support and the area of the module’s activity (with regard to each
operation that can be performed against the module).

Overview

Plesk provides the mechanism of extending its base functionality with additional modules. A
module is a kind of plug-in built into Plesk and providing access to its own functionality or to
the functionality of an external service from Plesk Control Panel (PCP).

Purpose

The main advantage of Plesk is the opportunity to manage a wide range of functionality from a
single control panel. In this sense, integrating additional applications and services with Plesk via
the mechanism of modules gains benefit as follows:

= PCP provides means for installing/uninstalling modules easily,

= modules integrate with Plesk Language system,

= modules integrate with Plesk Help system,

= modules use skins provided by Plesk,

= Plesk provides Modules API specially designed to create Plesk-specific modules,

= modules are registered in Plesk, which prevents from casual deletion of 'module’
applications,

= amodule installed in Plesk cannot be used from outside — it can be used from PCP only.

The extension technology used in Plesk creates an illusion of seamless interaction between a
module and Plesk: once embedded, the module will be displayed on PCP along with native
modules of Plesk. Nevertheless, a module is an autonomous software unit. It can be installed
independent of Plesk, it does not depend on Plesk modifications, and Plesk does not depend on
the module’s modifications either.

Where Applicable

Plesk provides more than one technique to access third party applications and services from
PCP.

= The Application Vault technology allows the user to upload a web application to Plesk for
storage and to deploy it on customers’ domains on demand.

= The Custom Button technology allows quick access to any functionality from PCP, both
server-side and located in the Internet, by placing a link of the required resource on Control
Panel.

= The Plesk Modules technology extends Plesk with new administering facilities and provides
control of them from PCP. You need to create the code of the new functionality, but it is not
necessary to issue a new version of Plesk — the new functionality will be just embedded into
Plesk in the form of a module. Also, this technology helps extend the logic of Plesk by
integrating it with ready-made applications or services. Integrated units become accessible
from PCP.

Custom Buttons and Plesk Modules are very close in their result: both provide access to third-
party functionality via links. Custom Buttons are very easy to create, while Plesk Modules
require implementing the management logic. Use Modules if you need Plesk-specific support
(see above) and protection from casual actions.

There are several modules shipped with Plesk:

= Acronis Truelmage Server management module;

= Battlefield 1942 Server Manager (a game server);
= Counter-Strike Game Server;

= Samba Fileserver Configuration module;

= Firewall;

= Remote Admin for SiteBuilder2;

= Virtual Private Networking module (establishes secure connections on base of standard
channels);

= Watchdog (monitoring of Plesk Control Panel services).

Target Audience

Plesk Modules support was designed with Plesk Administrator in mind. It provides the
following enhancements:

= Plesk Modules make it possible to extend the administering functionality of Plesk 'on the
spot', without issuing a new version of Plesk;

= Plesk Modules allow the management of additional applications/services from PCP and
provide Plesk Administrator with the main advantage of Plug-in technology - simple install
and registration procedure.

How a Module Builds into Plesk Architecture

Plesk is made up of the following blocks:

= Plesk Control Panel (presentation tier);

= Plesk database and all clients’ databases hosted on a Plesk server and managed via Plesk
(data storage tier);

= Native modules of Plesk (AppVault, Event Manager, etc.) that implement the logic of Plesk
(middle tier);

= Custom modules that serve as Plesk extensions and provide their own GUI and logic. In this
sense, custom modules contribute both to the presentation tier and the middle tier of Plesk.

Custom modules are optional in the above structure of Plesk. They can be added to this structure
and removed from it when necessary, thus presenting independent extension units of Plesk.

Plesk Module Structure

A typical module is a package containing four kinds of code:

MODULE MANAGEMENT CODE

RESOURLCE HSTALLS
FUHCTIOHALITY FILES UHIHSTALL
CODE

Figure 1: The logical structure of a Plesk Module

Module’s functionality. This is the source and/or executable code of a module that implements
the logic extending Plesk. This is the code that works when Plesk Administrator triggers any
function of the module from GUI. This part of a custom module is optional as the logic of the
module can be located beyond the module itself, e.g. a module can provide access to a remote or
server-side service.

File types. PHP script files, C utilities.

Location. PHP files are located in the
<plesk_root_dir>/admin/htdocs/modules/<module_name>/ folder, C utilities
can be located either in the
<plesk_root_dir>/admin/bin/modules/<module_name>/ folder, or in the
<plesk_root_dir>/admin/sbin/modules/<module_name>/ one.

Module Management code. This code should implement the GUI and backend. This part of the
module is always present. Also, this part of code can include a configuration file used to change
system settings for smooth execution of the module. This file is optional.

File types. PHP files, C utilities, INCLUDE configuration file.

10

Location. PHP files are located in the
<plesk_root_dir>/admin/htdocs/modules/<module_name>/ folder, C utilities
can be located either in the
<plesk_root_dir>/admin/bin/modules/<module_name>/ folder, orin
<plesk_root_dir>/admin/sbin/modules/<module_name>/. The configuration

file can be located in the module’s package at
<plesk_root_dir>/admin/conf/modules/<module_name>/.

Resource files. This part of a module includes icons (GUI images), help files, localization files,
templates. All these files of a custom module are optional.

File types. lcons are presented by GIF files, help files are typical HTML, localization files are
PHP files, and templates are files in TPL format.

Location. Resource files are deployed to folders <plesk_root_dir>/admin/htdocs
and <plesk _root _dir>/admin /plib:

= jcons are located at /htdocs/modules/<module_name>/images/;

= help files are stored in
/htdocs/modules/<module_name>/locales/<locale_name>/help/;

= |ocalization files are located at
plib/modules/<module_name>/locales/<locale_name>.

= template files are stored in plib/templates/modules/<module_name>/.

Install/uninstall code. These are the module’s install/uninstall scripts. Most often, this part of
code is located in the module’s installation package (RPM/DEB/SH) rather then in the module
itself. If the SH installation package is used, the uninstall script should be located within the
module’s body at <plesk_root_dir>/var/modules/<module_name>/.

11

Recognizing a Module in Plesk Folder System

Plesk allocates resources of installed modules in its file and folder hierarchy as shown below.

=

<plesk_root _dir>/

== | admin/
= | bin/
[-= | htdocs/
= | plib/
[-= | sbin/
= conf/

This is the root directory of Plesk. Here
<plesk_root_dir> stands for the fully qualified
path of a directory where Plesk Server Administrator is
installed. In Unix, this path is normally
/usr/local/psa. In Debian, itis Zopt/psa.

This folder is meant to store everything required for
module administering. Namely, this folder contains PHP,
binary and image files that implement the GUI and logic
required for this task.

This folder stores binary utilities meant for low-level
(system) operations (normally, compiled C programs).
These can be the files of the module’s functionality and
the module management files as well. Besides binary
files, this folder stores symlinks of binary utilities
located in the sbin/ folder and executed with setuid
root privileges. To see the internal structure of this
folder, proceed to page 12.

This folder stores files used to display the module
management page(s) in a browser. These can be PHP
form files referring to the module management part as
well as resource files, e.g. HTML help files, icons
displayed on navigation buttons To see the internal
structure of this folder, go to page 12.

This directory stores PHP files of the module’s
functionality and the module management files as well.
Also, the directory stores resource files of the module,
e.g. PHP localization files and templates. To see the
folders nested within this one, go to page 13.

This folder contains binary utilities meant for low-level
operations on the system (normally, compiled C
programs) that should be executed with setuid root
privileges. These can be the files of the module’s
functionality and the module management files as well.
Also, this folder contains a setuid root wrapper utility
meant for this task. To see the internal structure of this
folder, go to page 14.

This folder contains the configuration file of Apache
server that runs Plesk. Also, this folder can contain
special files (one for an individual module) that modify
this configuration for a certain module. To see the
internal structure of this folder, proceed to page 14.

12

(= | var/ This folder is meant to store auxiliary files and
components of Plesk — log files, SSL certificates, etc. In
case of modules, this folder can contain the uninstall
script for a module wrapped into a SH distribution
package.

admin/bin Folder

This Plesk folder is meant to store binary files (executables, libraries, compiled C programs)
and symlinks of binaries located in folder <plesk_root_dir>/admin/sbin.

(== modules/ This Plesk folder contains a <module_name> folder
for each installed module.

(== | <module_name>/ | This folder stores binary utilities and symlinks of a
particular module.

Here a module can locate binaries referring to its logic and the management part. Also, here the
module can store symlinks of the binaries that require setuid root privileges. These symlinks
reference the mod_wrapper utility of Plesk located in the
<plesk_root_dir>/admin/sbin folder beside the binaries that match the module’s
symlinks.

admin/htdocs Folder

This Plesk folder stores files somehow related with GUI, i.e. meant for the display in the
browser. A module locates its source files in this folder as follows.

[= | modules/ This Plesk folder contains a
<module_name> folder for each
installed module.

== <module_name>/ The folder stores PHP files that
define GUI of a certain module,
including the index.php file that
serves as an entry point to GUI of a
module. Also, this folder contains
the following nested folders:

== | locales/ This is the “root’ folder for one or
several branches, each meant for a
certain locale.

(== | <locale_name 1>/ This folder isolates help files
referring to the first supported
locale.

(== | help/ The folder contains HTML help
files for this locale.

13

=

=

<locale_name 2>/ | This folder isolates help files

= help/

referring to the second supported
locale.

The folder contains HTML help
files for this locale.

<locale_name N>/ This folder isolates help files

(= help/

(= | images/

admin/plib Folder

referring to the N supported locale.

The folder contains HTML help
files for this locale.

This folder stores GIF image files
(icons) of the module’s GUI.

This Plesk folder stores PHP files implementing the logic of Plesk units. In case of Plesk
modules, this folder is used to store PHP files referring to the logic and management of the

module.

=

(==

modules/

(= <module_name>/

L=

templates/

locales/

This Plesk folder contains a
<modulle_name> folder for each
installed module.

This Plesk folder isolates a branch that
stores localization files for all installed
modules in the locales folder. Also,
it stores the locale.php file that
ships with the module and resolves the
current locale of Plesk.

This folder can store localization files
of two types:
messages_<locale_name>._php
stores error/warning messages and GUI
text, and
conhelp_<locale_name>.php
stores context help messages. Each
locale supported by the module can
have one or both these files in this
folder.

This Plesk folder isolates a branch
storing template files used by
FastTemplate engine to generate GUI

pages.

14

= modules/ This Plesk folder contains a
<module_name> folder for each
installed module.

= <module_name>/ | This folder contains TPL files (HTML
templates that define the layout of
module pages)

admin/sbin Folder

This Plesk folder is meant to store binary files (executables, libraries, compiled C programs)
having symlinks of the same name in folder <plesk_root_dir>/admin/bin.

(== modules/ This Plesk folder contains a <module_name> folder for
each installed module.

(== | <module_name>/ @ This folder stores binary utilities of a particular
module.

Here a module can have binaries of its logic and management that need to be executed with
setuid root privileges. These binaries should be located in this folder as Plesk stores its
mod_wrapper utility here that seves as a wrapper for module utilities. Symlinks of setuid
binaries reference this mod_wrapper utility, so when called via a symlink, mod_wrapper finds a
binary of the same name in the <plesk_root_dir>/admin/sbin folder and executes it
as a utility with root access permissions.

admin/conf Folder

Plesk uses this folder to store the httpsd.conf configuration file. The settings set in this
file can be modified for a certain module if place the httpsd.<module_name>. include
configuration file for this module beside the main file.

15

Plesk Modules Support Architecture

Being part of Plesk functionality, a module presents a standalone unit able to take care of itself
during the whole lifetime. If written and composed correctly, a module is capable of the
following:

= jtcan deploy itself to the specified server directory on demand;

= it can provide GUI for the management of its functionality, activate its functionality once
the user has performed certain actions via GUI,

= it can implement its own context help and provide it on demand;
= jtcan include localization support and provide it on demand;
= finally, it can uninstall itself on demand.

Thus, Plesk modules support technology should undertake just a small part of cares, in
particular, providing means to access the module via Plesk Control Panel, triggering the
install/uninstall procedure, and providing interactive collaboration between a module and Plesk
Help System/Plesk Language System. Let us look at the mechanisms provided by Plesk to
implement custom modules support.

Plesk Module Manager

Module Manager is a part of Plesk that provides GUI to operate modules, namely, to install the
specified module to Plesk, to display the list of all modules registered in Plesk and accessible
for use, to display GUI of the selected module, and to uninstall the module.

To get a better vision of where Plesk support ends and the module's work begins, there is a table
presented below:

Task What Module Manager does What Module does

Allows the user to select an
RPM/DEB/SH package via
GUI.

- triggers unpacking of the | m | - having got the command to

package to the server. unpack itself, the RPM/DEB/SH
package deploys its contents (file
and folder structure) to the server
directories specified in the package.

Module’s install

- the RPM/DEB/SH package
procedure

registers itself in the RPM/DEB/SH
system managed by the operating

system.
- after the module is 4m | - the module is registered in the
registered, the user can specified tables of Plesk database.

apply the Update operation
on the Modules page to see
the button of the new
module on it.

16

Viewing all modules
available

Uses GUI to display the
buttons of all available
modules registered in Plesk
database.

Opening module’s
GUI and performing
operations on
module

Once the user has pressed
the module’s button,
Module Manager displays
the default page of the
module (an entry point of
the module’s GUI).

- the default page should provide
graphics means to run the module
and/or navigation means to move to
other pages of the module.

- at least one (main) page of the
module should provide an
opportunity to return to Module
Manager (Plesk GUI concept
implies that any page contains a
link of a higher-level page).

Module’s uninstall
procedure

Allows the user to select
the candidates for deletion
in the list of available
modules via GUI, and to
trigger the uninstall
procedure as well.

- the RPM/DEB gets the command
to delete the contents of its package
and performs the task. In case of a
shell package (SH) Module
Manager deletes the package on its
own by triggering the uninstall
script stored in the
<plesk_root_dir>/var/mod
ules/ <module_name> folder.

- after the module is
uninstalled, the user can
apply the Update command
on the Modules page and
see that the module’s
button is disappeared.

- the module unregisters itself in
Plesk database.

Localization Support

Plesk Language Support presents a part of Plesk functionality that works on the level of Plesk
rather than on the modules support level. In other terms, the use of this mechanism is standard
for any component of Plesk that needs localization for its GUI or messages.

When displaying messages, context help, and HTML Help files, Plesk Language Support should
know what language to use to display the information. The rule is that the language matches the
locale settings defined for the whole Plesk. Once installed, Plesk uses the default locale, but the
locale can be changed at any moment of Plesk lifetime. Thus, every time the module starts
running, it relies on the value of Plesk global variable that holds the current locale of Plesk.

Locale Resolution Mechanism

17

The locale resolution mechanism should be implemented in the module itself, in its
locale.php file stored in the module’s folder

%plesk _dir%/admin/plib/modules/<module_name>. This mechanism is triggered
each time a module is started, and it works as follows. First comes the checkup of whether the
module contains message and context help localization files that support the current locale of
Plesk.

To localize messages, a module should contain the following resources in the
Y%plesk_dir%/admin/plib/modules/<module_name>/locales/<locale_nam

e> folder for every supported locale:

= one messages_<locale>._php file for every supported locale. These files are meant to
output messages and GUI labels in a proper language;

= one conhelp_<locale>._php file for every supported locale. These files are meant to
output context help messages in a proper language.

Localization files messages_<locale>_php and conhelp_<locale>.php have a
very simple structure and consist of records like “<identifier>> => “<message>’
making up an associative array.

If found, the required localization files are selected, otherwise selected are the files matching the
default locale of the module (normally en-US). Later on, Plesk global array of messages is
extended with records from the messages_<locale>.php file, and Plesk global array of
context help messages is added with context help records from the
conhelp_<locale>_php file and the path of this file. These settings are stored in the
global scope until the current Plesk session is terminated.

Thus, when a module is called for the first time within the current Plesk session, the module’s
localization resources are put into Plesk Language System and later on localization of the
module’s messages and GUI runs in a standard way. Once the module needs to output a
message to the user in response to any event, or when it is necessary to localize text on GUI
elements before display, Plesk Language System reads the required message from the global
array of Plesk by its identifier. The found message is returned to the calling page of the module.

The context help localization system functions similar, but having received the context help
message from the global array, the localization system passes it to Plesk Help System for
display.

As for localization of the module’s HTML Help, it is tied to the name of the
/<locale_name> folder and is not determined by the standard mechanism of Plesk
Language Support. To make localization of HTML Help files possible, a module should have at
its path %plesk_dir%/admin/htdocs/modules/<module_name>/locales as
many <locale_name> folders, as the number of supported locales. Every such folder
should contain a set of HTML files in a proper language.

Help Support

Plesk Help Support proposes support for two kind of help — context help and HTML help.
Getting a context help message in a proper language is performed by means of Plesk Language
System. Having received a message, Plesk Help System displays it to the left, in a special Help
section of the navigation pane of Plesk Control Panel.

18

To support HTML Help, a module should contain HTML files in its

%plesk _dir%/admin/htdocs/modules/<module_name>/locales/<locale_n
ame>/help folder. This can be a single file presenting a brief information about the module’s
purpose, or a multi-page manual arranged into a hierarchy of folders if necessary. HTML Help
files are displayed in a separate browser window above other opened documents.

A certain page of HTML Help can be bound with a definite form of the module. This means that
triggering help from a certain form of the module will lead to the display of the related HTML
file.

Binding HTML Help files with the module’s forms is an optional feature, but the presence of a
help file called by default is a strong recommendation.

19

Creating Modules

What Code Makes Up a Module

This chapter begins with an overview of what code should be created within a module, why this
code is necessary, and how this code will function. This knowledge will help with a preliminary
estimate of the amount of work on your module. The chapter continues with the Programming
Guide that can be used as a tutorial. Each step explains a specific aspect of the workflow.

Main code

Creating a module is a way out when it is necessary to extend Plesk with some extra
functionality. Actually, creating a module begins with the code that implements this
functionality. There are three ways how it can be obtained:

= the code can be written from scratch;
= athird-party code can be used;
= you can use a remote service that implements the required functionality.

Plesk does not impose any restrictions on the location of the functional code — it can reside on
Plesk server or in the Internet. In the last case, the functional code is not included into the
distribution package of the module.

Neither does Plesk impose constraints on the format of files implementing the module’s
functionality. These can be executables, dynamic libraries, scripts, or a combination of them.
They can be arranged into a convenient folder system. The only restriction refers to the use of
script files — developers should choose between the scripting languages supported in Plesk
(PHP, Perl).

The functional code makes up the core of the module. To integrate this code with Plesk and
make it function, some management code is needed. This is the point where the real work for
the programmer begins — it is necessary to wrap the selected code into the module ready for
integration with Plesk.

The management code always includes two parts - GUI and backend. GUI is implemented by
PHP forms and provides the user with module management facilities (start/stop buttons,
navigation through forms, etc.).

The backend part serves as a glue between GUI of the module and its functionality. Backend
files solve the task of handling events occurring on module forms, plus they perform various
operations invisible to the user (interaction with the module’s functionality, data processing,
global array operations, database transactions, etc.). The module’s backend can have a two-level
structure: reading data from forms, data validation, and other tasks are implemented in PHP
files, whereas low-level (system) operations are entrusted to C binaries which are more effective
for that. The core functionality of the module can be accessed from any of these levels.

The below figure demonstrates the principles of interaction between main parts of a module.

20

GUI FILES
PLESK ‘ —— php scripts II Perl, II
—— :
USER B php scripts
0K

bi
Comoryfies || executables II

Figure 2: The interaction between main parts of a module
Optional capabilities

For deeper integration with Plesk, modules are allowed to utilize the following Plesk features:

= FastTemplate is a third-party technology that implements generating HTML pages out of
PHP forms using templates. This technology is supported in APl Reference that contains a
special ‘form’ class for that. To utilize the FastTemplate technology, you need to create
forms based on this class, plus simple template files should be included into the module
package.

= Plesk Language Support is a feature that extends Plesk-specific localization techniques to
integrated programming units. A module can utilize this feature for its GUI text, messages,
and context help. This is worth doing as the localization of module messages can be
managed on the level of Plesk, along with Plesk messages.

Note: Plesk localization support is only provided for the management code of the module.

The localization of the functional core is the sole responsibility of its vendors. If this code

implements its own localization feature, then it will work autonomously and Plesk will not
be able to interfere in any way. Plesk just reads data from stdout of the functional code and
passes strings to GUI of the module in the form they have been read.

= Plesk Help Support can be useful if it is necessary to bind GUI forms of a module with
certain help files. In this case, calling help from a certain page of a module will load an
HTML help file associated with this page. And again, the functional core could have its own
help files managed by the logic of this core. Plesk only manages the use of help files related
to the management code of the module.

Customizing system settings

Changing system settings (e.g. access permissions, user groups, etc.) may be necessary for
smooth running of a module. When trying to execute a module, Plesk always checks whether
this module requires any changes in system settings. To inform Plesk that such changes are
necessary, you can add a special script file to the module package.

Distribution package

When all parts of the module are ready, they need to be packed into a distribution package.
Plesk Module Manager recognizes three types of distribution packages, that is: RPM, DEB, SH.
These packages have much in common when it comes to creating them. All of them require a
specification file and source files (the module package), and all of them can contain
install/uninstall scripts (if necessary).

21

Programming Guide

This tutorial will guide you through the process of creating a Plesk Module, which includes 10
steps as follows:

1 making up the hierarchy of folders of the module package;
2 adding the core functionality;

Next steps form the management code of the module. They include: creating GUI and the
backend code, adding localization and help support, and customizing the module’s
environment.

designing GUI of the module;
designing icons;

implementing Help system of the module;

o 01~ W

creating backend of the module (creating PHP files and C utilities of the module’s
backend);

localizing the module;
8 customizing system settings;

Once the module package is ready, it remains to wrap it into the distribution package.
9 creating install/uninstall scripts;
10 packing the module into an RPM/SH/DEB package.

Step 1. Making up the hierarchy of folders

The initial step is creating the folder structure of the module package. In many respects it
repeats the folder structure of Plesk. The reason for this is the use of RPM/SH/DEB technology
for building a distribution package of the module. When installing a package, this technology
just reflects its files and folders to the folder structure of the destination system. Thus, a module
package should present a copy of Plesk folder system. Its folder structure should specify the
destination paths of the module's files physically by locating them in proper folders of the
package.

The following table explains what folders can be added to the module package. The $module
folder stands for the name of the module, $locale means the name of a particular locale, e.g.
en-Us.

= <plesk_root_dir>/ Mandatory. This folder
matches the root directory
of Plesk. In Unix,
<plesk_root_dir> is
normally
/usr/local/psa.In
Debian, it is Zopt/psa.

(= admin/ Mandatory.

(= | bin/ Optional. This branch

22

modules/

(==

$module/

should be added if the
module has binary files
either in its functional
core, or in the management
code.

htdoc

s/

Mandatory.

modules/

Mandatory.

L=

$module/

Mandatory. Stores GUI
files of the module named
$module.

locales/

Optional. Is created if the
module implements its
own Plesk-specific help.

$locale/

(== | help

/

Optional. This branch is
necessary if the module
contains HTML help files.
If it does, there must be as
many such branches as the
number of languages in
which help is written.

images/

Optional. Contains an icon
displayed on the module’s
button and image files of
the module’s GUI.

plib/

Mandatory.

modules/

=

$module/

Mandatory. This branch
stores backend PHP files
of the module. PHP and
Perl files of the functional
core (if any) are located
here too.

locales/

Optional. If the module
uses Plesk localization
support, this folder is
necessary to store
localization files for all
supported locales.

templates/

=

modules/

== $module/

Optional. If the module
uses FastTemplate
technology for generating
its forms, this branch
stores template files in the
$module folder.

23

(= | sbin/ Optional. This branch is
necessary if the module

(== modules/ package has binaries (in its

core or management code)
(== | $module/ that should be executed

with setuid root privileges.

(== conf/ Optional. This folder is
necessary if the module
requires some system
settings to be modified in
order to run properly.

= | var/ Optional. This branch is
necessary if the module
(=7 | modules/ will be distributed ina SH
package. The $module
(== $module/ folder will store the
uninstall script of the
module.

Thus, the first step should result in the folder structure of the module which contains all
mandatory folders and some (or all of) optional, depending on what code makes up a module
and what Plesk specific features are implemented in it.

Step 2. Adding the core functionality

The step is optional and can be skipped if the core functionality of the module is a remote
service or application. If the functionality is created from scratch or a third-party application is
used, and if this code is executed on Plesk server, then this code should be included into the
module structure.

When allocating the files of the functional code within the module’s folder structure, the
following recommendations could help:

= Binary files (compiled C utilities, dynamic libraries) and symlinks are put to
<plesk_root_dir>/admin/bin/modules/$module/.

= Binaries referenced by symlinks and executed with setuid root privileges are located at
<plesk_root_dir>/admin/sbin/modules/$module/.

= PHP and Perl script files are put to
<plesk_root _dir>/admin/plib/modules/$module/.

= [cons are putto
<plesk_root_dir>/admin/htdocs/modules/<module_name>/images.

= HTML help files are located at
<plesk_root_dir>/admin/modules/<module_name>/locales/<locale_

name>/help according to the supported locale.

Thus, step 2 should result in the files of the functional code allocated within the module folder
structure according to the file type.

Step 3. Designing GUI of the module

24

This step is very important and cannot be skipped as here begins the work on the module’s
management code which will serve as a bridge between Plesk and the module’s core
functionality.

The creation of the management code starts with designing its visible part — the module's GUI.
A GUI consists of one or several forms that allow the user to start/stop the module, to define
settings, and so on. Each form is presented in the module package by a separate PHP file. This
file should solve the task of setting necessary parameters required by the form, plus it should
contain the code that creates HTML of all GUI elements of the form.

Plesk Modules API

GUI elements used to compose a form can be created using functions and classes of Plesk
Modules API. The API functions are as follows:

Forming GUI Elements

pm_comm_button

pm_link_button

pm pathbarMaker

pm_pathbarDestructor

Navigation

pm_go_to

pm _go _to uplevel

Plesk Modules API classes implementing GUI elements are as follows:

= The pm_Form class is designed as the HTML form generator. A special feature of this class
is FastTemplate support, though using this technology is not a requirement. Also, this class
provides parameters that help bind a form with the relevant help file.

= The pm_cList class generates a list element displayed on the browser’s page as a multi-
column table. Supported features are sorting, filtering, paging.

= The pm_Pathbar class presents a GUI element always displayed on top of Plesk pages and
used to show the path by which the user has got to the current page. This control is a
convenient navigation means that allows the user to get to any previous page displayed in
the pathbar GUI element as a link.

Entry Point to GUI

When the user clicks on the module’s button on the Modules page, Plesk looks through the
related module package for the index.php file which serves as an entry point to GUI of the
module.

This file is a suitable place to create the main form of the module as well as to set the table of
commands recognized by the module. For instance, this table can be implemented as a switch
construct:

$cmd = get _gpc("cmd");

25

switch ($cmd) {
case "beginEdit":
.. // handling
break;
case “reset”":
.. // handling
break;
case “remove-:
.. // handling
break;
default:
.. // handling
3

The code written within each case element is the point where GUI links the required backend
functionality (creates objects, calls functions, handles errors, etc.).

Please note that the above example is not a recommendation on how to write the index. php
file. The only requirement is that this file is present in the module package at
<plesk_root_dir>/admin/htdocs/modules/<module_name> and provides
access to the rest of the module’s functionality directly or indirectly (referencing other PHP
files).

Creating PHP Forms (Requirements and Recommendations)

Simple modules can have all necessary GUI elements located on a single form, while complex
modules require a multi-page GUI. All forms of a complex GUI make up a hierarchy that can
be arranged in a convenient folder structure. Besides, Plesk style requires that every form has an
Up Level button.

It is proposed to locate PHP ‘form' files in folder
<plesk_root_dir>/admin/htdocs/modules/<modulle_name> of the module
package beside with the index. php file. If these files are arranged into a folder structure, the
entire structure can be located within this folder.

Finally, a couple of words regarding the use of Plesk Modules API. Though Plesk provides a
special API for creating the module’s GUI, using it is not a requirement. There are some
advantages of using this API, that is:

= GUI elements created on basis of Modules API classes have a Plesk styled look.
= Such elements provide additional convenient features.

In respect of GUI forms, such convenient features are: Plesk Help Support provided for help
topics associated with forms, and the FastTemplate technology. And again, the developer is free
to select any convenient way to create module’s forms. The purpose of Modules API is just to
propose one particular way.

Utilizing FastTemplate Technology

If you choose in favor of pm_Form class of Modules API, this is the point to decide whether
FastTemplate is a good choice for generating forms of the module (as using the pm_Form
class does not make it necessary to use templates). This sub-topic demonstrates the power of
FastTemplate and proves that using it is really easy.

26

Using FastTemplate implies creating template files that define the static part of the HTML page.
These files should be created as standard HTML files, except they should contain templates
rather than static HTML text of GUI elements. These files should be saved with the TPL
extension (<File_name>._tpl)in
<plesk_root_dir>/admin/plib/templates/modules/<module_name>.

The following example demonstrates the simplicity of an HTML template file:

<div style="margin: 20px O 10px; ">
{INFO}
</div>
<div class=""toolsArea'">
<fieldset>
<legend>{TOOLS_LEGEND}</legend>
<table width="100%" cellspacing="0" cellpadding="0"
border="0"><tr><td>
{START_BUTTON}{STOP_BUTTON}{REFRESH BUTTON}
</td></tr></table>
</fieldset>
</div>
<div class="listArea">
<fieldset>
<legend>{DISKS_LIST_LEGEND}</legend>
<table width="100%" cellspacing="0" cellpadding="0"
border="0"><tr><td>
{DISKS_LIST}
</td></tr></table>
</fieldset>
</div>

Here is how this template page looks like in the browser:

{INF O}

- (TOOLS_LEGEND}
(START BUTTON} {STOP_BUTTON} {(REFRESH BUTTON)
- (DISKS_LIST LEGEND)
(DISKS_LIST)

Figure 3: The Disks.tpl template file

Templates are labels enclosed in curly brackets. When the FastTemplate engine (integrated with
Plesk) parses this page, templates serve as tokens to be replaced with HTML code of certain
GUI elements. The advantage is the flexibility of making pages - each time this HTML is
generated dynamically. The below figure illustrates the result of work of the FastTemplate
engine:

27

23 plsk000000000000 Plesk 8.0.0 - Microsoft Internet Explorer

© Copyright 1999-
All Right:

Modules =
Watchdog 1. UpLevel

General

System |Servi-:es | Disks | Secutity || Statistics || Preferences

Help & Support Disks monitoring management.

 Tools

@.

Enable Refresh

r Disks
§ ™ Device Mount point Disk space usage threshold Files Mumber Threshold Command

) (B Jdevsdatl |

Figure 4: The page generated using the Disks.tpl template file

From the programming standpoint, the Disks form shown on the above figure is a tab of the
Watchdog form. So, there must be a class inherited from the abstract pm_Form class and
implementing the Watchdog form and one more ‘tab’ class that inherits from ‘Watchdog’. To
utilize FastTemplate, the “Watchdog’ (parent) class should have its deFine () method
overridden as follows:

// Tunction define ()
$templates = array(
"tab®™ => “disks.tpl’,

E
This code defines short names of template files (disks. tpl) and associates them with real
templates ({TAB}). (Actually, the “tab” item of the $templates array stores the code that

detects the template file of the currently active tab — Services, Disks, Security, Statistics, or
Preferences. The disks.tpl file is hard-coded in this example for better understanding.)

The “tab’ (child) class should contain the following code in its overridden ass ign () method:

// function assign
$info = wd__Imsg(''Disks monitoring management.');
$vars = array(
"PAGE_TITLE®" => wd__Imsg(*"Watchdog™),
"CONTEXT®" => safetyjs($context),
"INFO® => $info,
"TOOLS_LEGEND®" => wd__Imsg(*"'Tools™),
"START_BUTTON" => **,
*STOP_BUTTON® => ==,
"REFRESH_BUTTON" => =",
"DISKS_LIST_LEGEND® => wd__Imsg(*'Disks"),
"DISKS_LIST" => $DisksList->get(),
)

This code declares templates and associates them with localized strings (via localization keys)
or functions generating HTML of relevant GUI elements.

28

All methods of class pm_Form and their calling order are stated in the class pm_Form topic of
API Reference.

Thus, the step devoted to GUI of the module should result in a set of PHP files generating GUI,
including the 1ndex . php one, and optionally in a set of template files, all of them located in
proper folders of the module’s package.

Step 4. Designing icons

This step is optional and consists in designing at least one icon in the GIF format that will be
displayed above the module’s link button on the Modules page. This step makes the Modules
page look stylish, but if you skip it, the module’s link button will be displayed with the default
icon anyway. Beside this icon, the module's GUI can use icons on its forms, all in the GIF
format, 32x32 pixels large.

Once the icons are ready, put them to folder
<plesk_root_dir>/admin/htdocs/modules/<module_name>/images of the
distribution package.

Thus, this step should result in at least one GIF icon located at a definite path in the module’s
distribution.

Step 5. Implementing Help System of the module

This step is optional. However it is recommended that GUI of the module does provide help
topics for module forms.

A standard help topic is an HTML file. You can create a single help file that would describe the
module in common words, and this file would be invoked from the main module page and
displayed in a separate browser window above other windows. Or this file can be a multi-page
manual with an index page. Besides, you can provide each page of a multi-page module with its
own help file. When the user asks for help on a certain page of such a module, the associated
help topic is displayed in a separate browser window.

Creating a single-language help

Determine GUI pages that require help, and create help files for them. HTML help files can
have any names, but these names should be unique within the module’s package. By default,
help files of a module are written in English (the default language of Plesk). Once the help files
are ready, add them to the module’s package. E.g. if written in English, they are put to folder
<plesk_root _dir>/admin/modules/<module_name>/locales/en-US/help.

Creating a multi-language help

If the multi-language help is required and English (or other) help files are already available, they
should be localized manually, their names kept unchanged.

Then all localized help files need to take a certain place within the module’s distribution
package. The <plesk_root_dir>/admin/modules/<module_name>/locales
folder can contain multiple <locale_name> subfolders, one for each locale. All localized

help files should be distributed between package folders
<plesk_root_dir>/admin/modules/<module_name>/locales/<locale_nam

e>/help according to the locales they refer to.

29

Note: <locale_name> is formatted as specified in IETF RFC1766, 1ISO 639, and ISO
3166 (it should look as <language code>-<country code>, e.g. en-US for USA
English, en-GB for British English, de-DE for German in Germany, de-AT for German in
Austria, etc.).

Binding a help file with a form

To invoke a certain help file, a GUI form should contain the code as described below. The code
example is extracted from the main page of the Firewall module (ships with Plesk).

// set help support for firewall module
$vars["BODY_ONLOAD"] = "SetHelpModule("firewall®);";

// associate this form with help file Firewall _main.html
$vars["CONTEXT"] = “Ffirewall_main®;

The above example demonstrates how to bind the Firewall_main.html help file with an
instance of the class derived from pm_Form. This instance has a $var member variable that
stores a set of parameters, including BODY_ONLOAD (sets a function to execute when the

body of the form is loaded) and CONTEXT (is used to store the name of the HTML help file).

This binding should be set in every PHP file implementing the form with a help file. When help
is invoked for such a page, Plesk will search for help files at
<plesk_root_dir>/admin/modules/<module_name>/locales/<locale_nam

e>/help where <locale_name> matches the locale currently set in Plesk.

If you prefer to use a custom class (not derived from pm_Form) for your GUI forms, this class
can support Plesk Help System if you undertake two steps:

= HTML of the form generated by some member function of the custom class should contain
the handler of the body . onload event which in turn should contain the following lines:
SetContext(“"<help_file>", "");
SetHelpModule("<module_name>");

= The body of the generated HTML page should contain the declaration of the following
Plesk script files:
<script language="javascript" type="text/javascript"
src=""/javascript/common. js''></script>
<script language="javascript" type="text/javascript"
src=""/javascript/chk.js._php"></script>

Thus, this step should result in a set of HTML help files put to the module’s distribution
package according to the supported language, and (optionally) in binding forms with certain
help files.

Step 6. Creating backend of the module

This step is mandatory as it refers to creating the management code of the module. If the
module’s GUI is ready, it is necessary to bind the visible part of the module with its functional
part. This binding includes:

= Reading the data entered to fields of the module forms,

= Validating this data,

= Passing this data to the functional code of the module for processing,

= Reading the result returned by the functional code,

= Passing the result to GUI,

30

= Handling errors on all steps of data processing.

Using Modules API in the backend code

To perform these tasks, the functions of Plesk Modules APl come to help. They can be grouped
as follows:

Parameter Operations

m_qget C

pm_get locale

pm_isset_gpc

pm_set_gpc

Data Formatting and Conversion

pm_ldate

pm_ldatetime

pm_lItime

pm_plesk_mail

pm_safetyhtml

pm size b printing

pm_size kb printing

pm_size_ mb_printing

pm size pretty printing

pm time pretty printing

Error Handling/Messaging

pm_alert

pm_Imsg

pm_psaerror

pm_topnote

pm_warning

System

pm_util_exec

31

pm util io exec

Besides, Plesk Modules API exposes the pm_Checker class that can be used when writing the
backend code. This class provides a variety of member functions for data format checkup.

The above API resources are proposed for use in PHP code.
The structure of the backend code

In fact, the backend code is not homogeneous in the sense of its file types. The whole backend
code can be conditionally considered as a two-level structure.

= The upper level of the backend code is written in PHP, it can use Modules API. This code
implements operations listed at the beginning of this topic. In common words, this part of
backend interacts with GUI, handles data, and performs operations on the core functionality
of the module.

= The lower level of the backend code is binary. Its files (hormally compiled C utilities)
implement system operations, for instance, references to databases residing on Plesk server,
file and folder operations, etc.

Allocating backend files

The upper-level code should be located at
<plesk_root_dir>/admin/plib/modules/<modulle_name>.

To allocate the low-level code, keep in mind the following:

= jf the utility can be executed with any access permissions, then it is put to folder
<plesk_root_dir>/admin/bin/modules/<module_nhame>.

= if the utility should be executed with setuid privileges, then it is put to folder
<plesk_root_dir>/admin/sbin/modules/<module_name> and a symlink of
the same name referencing the mod_wrapper module is put to
<plesk_root_dir>/admin/bin/modules/<module_nhame>.

The admin/sbin folder of Plesk stores a special mod_wrapper module. This module can
provide its own context to execute a utility with root user permissions using the setuid
technique. When activated, a symlink of this module triggers mod_wrapper to start, and this
module looks through the /sbin folder and all its subfolders for the utility with the name
matching the symlink name.

So, this step can result in some PHP files implementing the interaction between GUI and core
functionality of the module, and in a set of utilities for low-level operations, all of them
allocated within the module’s package as described above.

Step 7. Localizing the module

This step can be skipped if the module will always show its messages and GUI text in English.
In this case all strings with messages can be simply hardcoded in the module’s code. However,
if the module is a commercial product, using it becomes more comfortable if it provides a
GUI/message localization feature. So, if you decide to provide such a feature, Plesk in turn can
provide you with a Plesk-enabled language support technique which is described below.

32

The concept of Plesk Language support has already been considered in brief in the Basics
section. Here we describe the steps that will provide a module with Plesk-enabled localization
support.

Creating localization files

All messages/GUI text of a module are accumulated into two localization files with fixed
names:

= messages_<locale_name>_php (for warnings, error messages, and GUI text),
= conhelp_<locale_name>._php (for context help messages),

where <locale_name> is formatted as <language code>-<country code>
according to IETF RFC1766, 1SO 639, and ISO 3166 , e.g. en-US for USA English, en-GB for
British English, and so on.

A localization file contains an array of pairs like <key>=><local ized_string> where
<localized_string> isastring being localized and <key> is a unique localization key.

global $my_module_conhelp_arr;
$my_module_conhelp_arr = array(
“module_activate’ => “Start the module.”,
“module_deactivate” => “Close the module.”,

);

Each supported locale should have one or both localization files. If a module supports several
locales and contains several localization files of the same type (e.g. nessages_en-US.php,
messages_de-DE.php, etc.), the collection of localization keys should be similar in all these
files (while the translations vary for different languages).

When ready, all localization files are added to the same folder of the module package
(<plesk_root_dir>/admin/plib/modules/<module_name>/locales).

Using localization keys in the code

Now let us look how these localization pairs are used in the code. The principle is that PHP files
of the module’s management code contain references by localization keys rather than
hardcoded message strings. Here is the code snippet from the Firewall module (ships with
Plesk) that demonstrates how <key>=><localized_string> pairs are defined in the
arrays of messages and then used to describe the link button and to show the page title.

/*********************/

/* conhelp_en-US.php */
/*********************/
<?php
global $firewall_conhelp_arr;
$Firewall_conhelp_arr = array(
“Firewall_activate” => “Configure the system.”,

);

?>

/**********************/

/* messages_en-US.php */

33

/**********************/
<?php
global $Imsg_arr;
$Imsg_arr = array(
"activateform__activating page title®" => "Activating
configuration”,
)

?>

/*************************/

/* Firewal IMainForm.php */

/*************************/

<?php

évars = array();
$vars[“ACTIVATE_BUTTON”] = link_button(“firewall_activate’, ...);

évars['PAGE_TITLE']
safetyhtml (Imsg("activateform_ _activating page_title"));

?>

How localization works

Here is the way how Plesk localization technique works. When the localized module is started
for the first time within the current Plesk session, all <key>=><locali1zed_string>

pairs stored in localization files of the current locale (or of the default one if the current locale is
not supported in the module) are added to the global array of Plesk messages. When parsing the
management code of a module, PHP engine comes across references by a localization key and
retrieves the value of this key from the global scope of Plesk. Here you should note that Plesk
does not undertake any measures to add the contents of localization files to the global scope.
This task should be implemented by the programmer in the code of the module. See the example
further in the text.

Locale resolution mechanism

And the last unclear aspect is: when started, how does the module detect the current locale of
Plesk? Plesk does not serve activated modules, so it will not inform the module about the
current locale. The module should get this information itself. Here a specially created
locale.php file comes to help. This file should be created by the developer and added to the
module’s package at <plesk_root_dir>/plib/modules/<module_name>.

The name of this file is not strictly fixed, and the file can even be missing. In fact, it is created
with the only purpose in mind — to isolate the code that detects the current locale in Plesk. There
are no limitations on how this can be done and in which file this code is located, provided this
other file is included in a proper place.

The following example is the locale . php file written for the Firewall module (ships with
Plesk). The task of this code is: to detect the current locale of Plesk, to check whether the
current locale is supported by the module and to handle the situation if it does not, and to load
localized messages to the global scope.

/**************/

/* locale.php */

34

/**************/

<?php
/**

* This function loads the modulle®s locale files. This file

* automatically calls this function
*/
function load _module locale()

// Get the current locale

$locale = get locale();

$defaultlLocale = "en-US";

if (Vis_dir(PRODUCT ROOT D .
*/admin/plib/modules/firewall/locales/$locale™))

$locale = $defaultlLocale;

// Load messages to the global scope
$Imsg_main = $Imsg_arr;

if ($locale != $defaultlLocale)

include_once

('modules/fTirewall/locales/$locale/messages_$locale.php™);

$Imsg_custom = $Imsg_arr;
require_once

);

$Imsg_arr = array_merge($lmsg_main, $Ilmsg_arr, $Imsg_custom);

unset($Imsg_custom);
unset($lmsg_main);
global $session;
$reload = false;

$specific_conhelp = $session->getParam("“specific_conhelp®);
if (Visset($specific_conhelp["firewall $defaultLocale™])) {
$specific_conhelp["firewall _$defaultLocale']
= array("arr_name® => “firewall_conhelp_arr"=,

conhelp_file® =>

global $Imsg_arr;

("'modules/firewal 1/locales/$defaultLocale/messages_$defaultlLocale.php"

"modules/firewall/locales/$defaultLocale/conhelp_$defaultLocale.php™);

$reload = true;

}
it (Nisset($specific_conhelp["firewall _$locale"])) {
$specific_conhelp["firewall $locale™]
= array("arr_name®" => "firewall _conhelp_arr",

"conhelp_file" =>

"modulles/Tirewall/locales/$locale/conhelp_$locale._php™);

$reload = true;

}
if ($reload) {

$session->putParam("“specific_conhelp”®,

$specific_conhelp);

go_to($_SERVER["REQUEST URI"], "self",

"refresh_leftframe();");

}
}
load_module_locale();
?>

So, this step should result in the localization files created and allocated properly, and in the

locale resolution file as well.

Step 8. Customizing system settings for the module

35

This step is optional, and it is proposed that the developer takes a decision regarding it based on
the following. Sometimes smooth execution of a module requires such actions as changing
owners (and access permissions) of certain files, making up groups of special users, customizing
network settings, etc. These changes are made on the system level, and the module can declare
them in a special file. If these modifications of system settings are not necessary, you can skip
this step.

If the module requires some modifications in the current system settings, it should contain the
file named httpsd.<module_name>. include in folder
<plesk_root_dir>/admin/conft of the module’s package. This file contains a shell
script that runs system/custom utilities to perform the required modifications.

When Plesk tries to execute a module, it always checks whether the module contains this file at
the specified path, and executes the script if the file is found.

Here is the example of this script:

#1/bin/sh

echo 0 > /proc/sys/net/ipv4/ip_forward
@@IPTABLES@@ -F

@@IPTABLES@@ -X

@@IPTABLES@@ -Z

@@IPTABLES@@ -P INPUT ACCEPT
@@IPTABLES@@ -P OUTPUT ACCEPT
@@IPTABLES@@ -P FORWARD DROP

if [-f "@@PRODUCT_ROOT_D@@/var/modules/@@VMODULE@@/openvpn.pid™];
then
kill “cat "@@PRODUCT_ROOT_D@@/var/modules/@@MODULE@@/openvpn.pid®™
rm - "@@PRODUCT_ROOT_D@@/var/modules/@@VMODULE@@/openvpn.pid*”
Fi

This script executes a set of commands of the iptables utility, after which the
openvpn.pid module is used to modify network settings.

Thus, if not skipped, this step should result in the file with a shell script created and put to the
proper folder of the module package.

Step 9. Creating install/uninstall scripts

At this step all module files are ready for the distribution, and it is necessary to make a decision
regarding scripts that serve two points of the module’s lifetime.

Scripts That Work Before and After Installing/Uninstalling a Module

These scripts are included in the RPM/SH/DEB distribution package. When the package is
being built, these scripts are copied to its folders (in RPM, these are folders PREIN, POSTIN,
PREUN, POSTUN). These scripts are optional. They are necessary for operations like
creating/destroying database objects, registering/unregistering the module package in a special
table of Plesk database, generating/destroying system objects (files, folders), and so on.

The full set of such scripts is as follows (the example is given for an RPM package, the naming
format is not fixed):

36

RPM
Package
Folder

Script

Expected Tasks

PREIN

rpm_<module_name>_install_pre.sh

Can set system and DB
parameters, configuration
files, etc.

POSTIN

rpm_<module_name>_install_post.s
h

Can register the module in
Plesk DB tables, create DB
and system objects, set
various module parameters,
access permissions to files,
etc.

PREUN

rpm_<module_name>_uninstall_pre.
sh

Can remove the module and
all related options from the
DB, etc.

POSTUN

rpm_<module_name> uninstall_post
.sh

Can clean out all marks of the
module’s presence from Plesk
DB and system.

One of the most important tasks of installing/uninstalling modules is interacting with Plesk
database. First of all, any module must register itself in the Modules table of Plesk database,
which makes sense to be done in the postinstall script. This table has the following fields:

Field Type Restrictions Description
id INT UNSIGNED AUTO_INCREMENT module’s id
PRIMARY KEY
name VARCHAR(25 | BINARY NOT NULL, UNIQUE module’s name
5)
packname VARCHAR(25 | BINARY NOT NULL package name (can
5) match the module’s
name)
display na | VARCHAR(25 | BINARY NOT NULL displayed module’s
me 5) name
version VARCHAR(30 | BINARY NOT NULL module version
)
release INT UNSIGNED NOT NULL package release
descriptio | VARCHAR(25 description of the
n 5) module
icon VARCHAR(25 | BINARY NOT NULL icon shown for the
5) module on Control
Panel

37

A record written to this database should be unique (duplicate module installations are
inadmissible), so it is a good practice to check this table for a similar record already available
before the insert.

When removing a module, the related record should be cleaned out from the Modules table,
which is normally done in the preuninstall script.

Besides registering itself, a module may need to create its own internal tables in Plesk database
in order to register custom settings in them. This can be done in the postinstall script. The
naming format for such tables is module_<module_name>_* (e.g.
module_fileserver_users). SQL commands creating tables can be included to the
postinstall script directly. Also, it’s a good practice to isolate SQL code in separate files
(formatted as standard shell scripts but not declared as such) and include them to the postinstall
script. The following code can serve as an example of an internal MySQL table:

CREATE TABLE module_ fileserver_users (

id int(10) unsigned NOT NULL auto_increment,

name VARCHAR(255) CHARACTER SET ascii COLLATE ascii_general_ci
NOT NULL default " ",

SysS_name VARCHAR(255) CHARACTER SET ascii COLLATE
ascii_general _ci NOT NULL default "=,

password VARCHAR(255) CHARACTER SET ascii COLLATE ascii_bin
NOT NULL default " ",

password_type enum(“plain®, "crypt®") NOT NULL default "plain®,

PRIMARY KEY (id),

UNIQUE KEY name (name)
) TYPE=MyISAM;

When the module is uninstalled, all its internal tables need to be deleted from Plesk database
too. This task is performed by the preuninstall script.

When ready, these ‘pre’ and ‘post’ scripts are added to the RPM/SH/DEB package during its
build (see Step 10 of this tutorial).

Uninstall Script for SH Distribution Packages

One more situation that should be handled ‘in advance’ is the use of a SH package when
installing a module. A SH module package is a set of shell commands that install a module. In
contrast to RPM and DEB, such a package is not registered in the system, so the system does
not remember the installation history of the module and will not be able to uninstall it. This
should be done by a special uninstal 1 script located in folder
<plesk_root_dir>/var/modules/<module_name> of the module package. This
shell script deletes all files and folders of a module and triggers pre- and postuninstall scripts if
necessary.

The uninstal l script is activated in Plesk as follows: when the administrator selects the
delete operation for a module via Plesk GUI, Plesk passes control to ModuleManager that in
turn looks for the uninstall scriptin
<plesk_root_dir>/var/modules/<module_name>/ and triggers it to execute.

Thus, this step should result in a set scripts meant to pre- and postprocess the module’s

install/uninstall, and (optionally) in one more uninstall script necessary if one chooses in favor
of the SH package to distribute the module.

Step 10. Creating the Distribution Package

38

At this step, all components of the module’s package are ready and the package itself is fully
formed. Now it’s time to decide what distribution technology to choose. Plesk recognizes three
types of distribution packages - RPM technology which is ‘native’ for Unix operating system,
SH technology, and DEB technology that targets Debian Linux.

Creating an RPM package

Since the code of the module is ready and packed into a folder structure, it remains to wrap it
into an RPM package, which implies two steps:

= creating the SPEC file for the RPM package,
= assembling the RPM package.

A standard SPEC file should have a name formatted as follows:

<package name>-<application version>-<release number>.spec

A SPEC file contains the information necessary to build an RPM package. The header of this
file contains a standard set of information that includes the application’s description, its name,
version number, release number, etc. Also, this file contains instructions on the building
process, lists of application files and lists of third-party applications necessary for the install
procedure.

The following SPEC file created for the Counter-Strike2 Server version
3.1.0.6 illustrates the above:

%define name cs-gs2

%define display name Counter-Strike2 Server
%define cs_gs_version 3.1.0.6

%define mod_version 10000

%define display_mod version %{cs gs vers}

Summary: Counter-Strike and Counter Strike:Source game server module
for Plesk

Name: %{name}

Version: %{display _mod_version}
Release: %{rels}

Copyright: GPL

Vendor: SWsoft

Group: Amusements/Games

Packager: SWSoft Inc <info@swsoft.com>
BuildRoot: %{cs_gs_ buildroot}

Prefix: %{product root d}

Prereq: psa >= 7.5.0

Requires: psa-security = 7.5

Provides: plesk-module

%description

%{name} is Counter-Strike game server module for Plesk.

Y%prep

[-f %{cs_gs buildroot}/../rpm cs-gs2_install _pre.sh]

[-f %{cs_gs buildroot}/../rpm cs-gs2_ install _post.sh]
[-T %{cs_gs buildroot}/../rpm _cs-gs2_uninstall_pre.sh]

Y%pre

%include %{cs gs buildroot}/../rpm cs-gs2_ install _pre.sh
%post

%include %{cs _gs buildroot}/../rpm cs-gs2 install _post.sh
%preun

%include %{cs _gs buildroot}/../rpm cs-gs2 uninstall _pre.sh
%Files

39

%defattr(-, root, psaadm)
%{product_root_d}/admin/bin/modules/%{name}
%{product_root_d}/admin/sbin/modules/%{name}

%defattr(-, root, root)
%{product_root_d}/etc/modules/%{name}/
%{product_root_d}/admin/htdocs/modules/%{name}/
%{product_root_d}/admin/htdocs/images/modules/%{name}/
%{product_root_d}/admin/plib/modules/%{name}/
%{product_root_d}/admin/plib/templates/modules/%{name}/
%{product_root_d}/admin/htdocs/images/custom buttons/cs-small_gif
%{product_root_d}/var/modules/%{name}/

%changelog

* Tue Nov 08 2005 Plesk Inc <info@swsoft.com>

- First build

Once the SPEC file is ready, it’s time to build the RPM package. This can be done by the
following command executed under RedHat Linux:

rpmbuild --bb --target=noarch /Zusr/src/redhat/SPECS/<spec_file_name
>_spec

Once this command is executed, a special message informs the user about the folder where the
resulting RPM package is located. E.g. the above example will put the RPM package to the
/usr/src/redhat/RPMS/noarch folder.

Visit http://www.rpm.org/RPM-HOWTO/build.html to learn more about the process of
building RPM packages.

http://www.rpm.org/RPM-HOWTO/build.html

40

Creating a SH package

First comes the preparatory step at which the module package gets compressed. Pack the
module into a TAR archive to merge its hierarchical folder structure into a single file, and then
compress the resulting TAR file into a ZIP archive file. E.g. module psa-sbm2 v1.1-0021
module can be packed into the psa-sbm2 . tar file and then compressed into the psa-
sbm2 . tar .gz archive file.

To wrap the compressed module into a SH package, proceed through the following steps:

= create an empty SH file;

= create the contents of this file;

= encode the module package using UUENCODE;

= append the encoded module package to the SH package.

A SH file should have a name as follows:

<application name>-<version number>-<release number>._sh

First it is necessary to create an empty SH file, e.g. psa-sbm2-1_.1-0021_sh, and make it
executable using the following commands:

> psa-sbm2-1.1-0021.sh
chmod 777 psa-sbm2-1.1-0021.sh

The contents of this file should contain a header where it is specified that the package refers to
Plesk modules:

#1/bin/sh
#Provides: plesk-module

Next comes the section that describes how the module package will be decoded from
UUENCODE as well as enumerates the archive files, includes the code that will unpack this
archive, copies the module’s files to a specified location, and cleans out temporary installation
files and folders.

The following example is an extract of the SH file of the SiteBuilder module (ships with Plesk):

#1/bin/sh
#Provides: plesk-module

initial_conf(Q)
{
PRODNAME = *‘psa™
PRODUCT_NAME = "Plesk™
product full = "Plesk"
PRODUCT_FULL_NAME = *Plesk"
product_etc = "/etc/${PRODNAME}"
}
set_module_params()
{
module = "sbm2"
module_full = "Remote Admin for SiteBuilder2"
packname = "‘psa-sbm2"
module_current version = "1.1 21"

modulle_ver =

"$PRODUCT _ROOT_D/admin/plib/modules/${module}/version"
module_conf =

""$PRODUCT _ROOT _D/admin/plib/modules/${module}/config.php"

41

modulle_version = "1.1"

module_release = "0021"

module_sql_File =
""$PRODUCT_ROOT_D/etc/modules/${module}/sbm2_db.sqgl"
}

mysql_query(Q
{

result = “echo "$query" | $mysql 2>/dev/null”
return $result

}
set_common_params()
{
initial_conf
set_module_params
set mysql params
mysgl_client = "$MYSQL_BIN_D/mysql*
mysql_passwd_file = "$product_etc/.${PRODNAME} . shadow"
admin_passwd = “cat "$mysql_passwd_file"’
mysgl = "$mysql_client -N -uadmin -p$admin_passwd -D${PRODNAME}"
}
sbm2_install_db()
{
echo "===> Installing database"
query = “cat $module_sql_fFile"
mysql_query
}
sbm2_install_registration()
{
echo ""'===> Registering module..."
query = "

REPLACE INTO \"module_2_sbm_config\~ VALUES ("3", "version",
"$modulle_version-__release_ ");

REPLACE INTO Modulles (\"name\~, \ packname\”, \"version\,
\"release\”, \ description\”, \"icon\", \"display name\~) VALUES
("$module”, "$packname®, "$module_version®, “"$module_release”, "The
SBM2 modulle provides functionality for remote administration of
SiteBuilder2.", "/modules/$module/images/icon.gif", “$module full®);"

mysql_query

echo "===> Module has been registered successfully."

echo $module_current_version >$module ver

}
sub_which(Q
{
local prog = "$1"
if ["X$prog"™ = "X"]; then
return 1
fi;
IFS =:

for E in $PATH; do
if [-f "$E/$prog"” -a -x "$E/$prog"]; then
echo "$E/$prog"
return O
fi

42

done

return 1
3
sbm2_unpack_tar()
{

uudecode $0

GTAR = “sub_which gtar”

echo "===> Installing module ${packname}"

$GTAR --owner=root --group=psaadm -C $PRODUCT_ROOT_D/admin -xzf
${packname}.tar.gz

mv -f $PRODUCT_ROOT_D/admin/app-key-handler.module-sitebuilder-2
$PRODUCT_ROOT_D/bin

mkdir -p $PRODUCT_ROOT_D/etc/modules/$module

mv -F $PRODUCT_ROOT_D/admin/sbm2_db.sqgl
$PRODUCT ROOT _D/etc/modules/$module

if [! -d $PRODUCT_ROOT_D/var/modules/$module]; then

mkdir $PRODUCT_ROOT_D/var/modules/$module

fi

mv —-f $PRODUCT_ROOT_D/admin/uninstall
$PRODUCT ROOT D/var/modules/$module/

chmod 550 $PRODUCT_ROOT_D/var/modules/$module/uninstall
$PRODUCT_ROOT_D/bin/app-key-handler._module-sitebuilder-2

rm - ${packname}.tar.gz

echo "'===> OK"

}

oper = "install"
set_common_params

sbm2_unpack_tar
sbm2_install_db $oper
sbm2_install_registration

In -s ${PRODUCT_ROOT D}/lib / 2>/dev/null
exit O
begin 644 psa-sbm2.tar.gz

Then the module package is encoded using the UUENCODE utility and added to the the SH file
using the following command:

uuencode psa-sbm2.tar.gz psa-sbm2.tar.gz >> psa-sbm2-1.1-0021.sh

43

Creating a DEB package

The procedure of packing a module into the DEB package resembles that one with RPM
packages. But there are two differences, that is:

= 3 CONTROL file is used instead of SPEC;

= assembling the package is done using the dpkg utility.

The CONTROL file contains various values which the package management tool will use to

manage the package. Though there are no format restrictions on the CONTROL file name, it is
recommended that the developers follow a standard naming convention for such files:

<package name>-<module version>-<release number>.control

A CONTROL file should contain the following control information necessary for the source
package:
= Source: the name of the source package. Optional.

= Section: the section of the distribution the source package goes into (in Debian: main, non-
free, or contrib., plus logical subsections, e.g. ‘admins’, ‘doc’, ‘libs’).

= Priority: describes how important it is that the user installs this package. This item can be
left as “optional’.

= Maintainer: the name and email address of the maintainer.

= Build-Depends: the list of packages required to build your package. This item is optional.

= Standards-Version: the version of the Debian Policy standards this package follows, the
versions of the Policy manual you read while making your package. This item is optional.

The information that describes the source package is as follows:

= Package: the name of the binary package. This is usually the same as the name of the source
package.

= Version: the version information related to the application itself and to Plesk.

= Installed-size: the amount of disk space (in bytes) required for a given application.

= Architecture: the CPU architecture the binary package can be compiled for.

= Depends: the packages on which the given one depends on. The package will not be
installed unless these packages are installed. This item should be used only if the application
absolutely will not run (or will cause severe breakage) unless a particular package is present.

= Provides: this field specifies that the package targets a Plesk moodule.

= Description: a short description of the package.

<Here is the place where the long description goes> The Package field is specified using the
following format:

Package: psa-module-<MODULE_NAME_IN_LOW_CASE>

The Version field is formatted as follows:

Version: <MODULE_VER>-<PLESK VERSION><MODULE RELEASE>

Here <MODULE_VER> stands for the version of the packed module, <PLESK_VERSION>
means the version of Plesk (e.g. 80 for Plesk v8.0), and <MODULE_RELEASE> means the
ordinal number of the module’s build.

The Depends field has the following format:
Depends: psa (>= 8.0)<MODULE_REQUIRES>

44

l.e. the required packages should follow one another without spaces, their versions specified in
brackets as shown in the format string.

The field coming after the Description field should meet the requirements to follow: this should
be a paragraph which gives more details about the package. There must be no blank lines, but
one can put a single . (dot) in a column to simulate that. Also, there must be no more than one
blank line after the long description.

Here is a sample CONTROL file:

Source: @@PRODNAME@@-cs-gs2
Section: non-free/net
Priority: extra

Maintainer: <info@swsoft.com>
Standards-Version: 3.5.8

Bui ld-Depends: debmake

Package: @@PRODNAME@@-cs-gs

Architecture: any

Provides: plesk-module

Pre-Depends: @@PRODNAME@@ (>= @@PRODVERSION@Q@)

Depends: @@PRODNAME@@-security-@@RELEASE_VERSION@@, @@PRODNAME@@ (>=
@@PRODVERS 10ON@@)

Description: Counter Strike: Source game server module for Plesk.

To build a DEB package, one can use the dpkg utility and issue the following command:
dpkg -b ${build_dir} ${package_file}
For example,

dpkg -b Zusr/local/modulebuilder/build/ cs-gs2-3.5.8-4 deb31 80
/usr/local/modulebuilder/build/psa-module- cs-gs2-3.5.8-8004 _all.deb

Visit http://www.debian.org/doc/maint-guide/index.en.html to learn more about the process of
building DEB packages.

http://www.debian.org/doc/maint-guide/index.en.html

45

API Reference

Plesk Modules API is designed to provide a third party developer with means of creating
custom Plesk-specific modules. This API is a collection of classes and independent functions.

Modules API Functions

This section of Plesk Modules API Reference contains syntax and semantic information for the

Plesk Modules API functions.

FUNCTION DESCRIPTION
pm_alert Shows the specified error message in case an error

occurs.

pm_comm_button

Returns the HTML formatted code used to represent
a button HTML element on the HTML page.

m_get_gpc Returns the value of the specified variable from the
array of parameters passed in to a script via GET,
POST, or COOKIE HTML method.
pm_get locale Gets the currently set locale.
pm_go_to Opens a certain URL in the specified window frame

in the browser, plus allows to specify some actions to
perform before URL is opened.

pm _go _to uplevel

Loads the upper-level URL to the currently active
window frame in the browser. Also, allows to specify
some actions to perform before URL is opened.

pm_isset_gpc Checks whether the specified variable is present in
the array of parameters passed in to a script via GET,
POST, or COOKIE HTML method.

pm_ldate Returns the specified date in the format defined in the
$def_date_format global variable.

pm_ldatetime Returns the specified date in the format defined in the

$def _datetime_format global variable.

pm_link_button

Returns the HTML formatted code used to represent
a link button HTML element on the HTML page.

pm_Imsg

Translates the specified index into the message text
taking into account the current locale settings.

46

pm_ltime Returns the specified date in the format defined in the
$def_time_format global variable.

pm_plesk_mail Forms an email envelope for Plesk email user on
basis of the standard set of information (to, subject,
message, etc).

pm_psaerror This function throws Plesk fatal exception.

pm_safetyhtml

Modifies the specified HTML string (replaces HTML
escape sequences with codes, etc.)

pm_set_gpc

Sets the specified variable to the global array of
parameters passed in to a script via GET, POST, or
COOKIE HTML method.

pm _size b printing

Accepts a string with the number of bytes and returns
the formatted value in bytes for printing.

pm size kb printing

Accepts a string with the number of bytes and returns
the formatted value in kilobytes for printing.

pm size mb_printing

Accepts a string with the number of bytes and returns
the formatted value in megabytes for printing.

pm size pretty printing

A universal function that converts the passed in
number of bytes to the best format (bytes/
KB/MB/GB/TB) so that the resulting value has a
non-zero integer part as small as possible.

pm time pretty printing

Converts the number of seconds to a pretty format
(e.g. exp: 2day(s) 12:45)

pm_topnote The function adds a warning message with the
specified text to the global array of messages of type
MSG_WARNING according to its ID.

pm_util_exec Safely runs the specified utility within Plesk exec

wrapper.

pm util io exec

Safely executes the specified utility, passing in the
data to the utility’s input and reading the utility’s
output.

pm_warning

Adds a warning message with the specified text and
without ID to the global array of messages of type
MSG_WARNING.

In addition to these API functions, there are two more GUI functions that serve the pathbar GUI
control located on the form. The pm_pathbarMaker () function should be called to
guarantee the creation of the only instance of the pm_Pathbar class on the form. The

pm_pathbarDestructor() function is designed to guarantee the destruction of the

pathbar with its parameters being saved to the global scope first.

47

FUNCTION DESCRIPTION

pm pathbarMaker Creates the only instance of the pm_Pathbar class
on the HTML form.

pm_pathbarDestructor Saves parameters of the pathbar GUI control to the
global scope before this control is destroyed.

pm_alert
Shows the specified error message in case an error occurs.
Syntax
pm_alert($msg)
Parameters
msg
A string value with the message to display.
Returns
Nothing.

Include: pm.php.

pm_comm_button

Returns the HTML formatted code used to represent a button HTML element on the HTML
page.

Syntax

pm_comm_button ($name, $conhelp, $handler, $enabled,
$tabindex)

Parameters
name

A string value with the button name.
conhelp

A string value with the context help index for this button. By default, this parameter holds
an empty space.

handler

48

A string value with the code of the onClick handler written in Javascript. By default, this
parameter holds an empty space.

enabled

A boolean value with the button status. Is set to true if the button is enabled, false otherwise.
The default value is true.

tabindex

A boolean value that is true if the button should have a tab index on the form, false
otherwise. The default value is false.

Returns

A string value that holds the HTML formatted code of the button’s representation on the HTML
page.

Remarks

If a button name consists of more than one word, the relevant name parameter should look as a
set of words glued with the *_” (underscore) character.

A valid conhelp parameter should go without the ‘b_" prefix.

Include: pm.php.

pm_get_gpc

Returns the value of the specified variable from the array of parameters passed in to a script via
GET, POST, or COOKIE HTML method.

Syntax

pm_get _gpc ($name, $default_value)
Parameters

name

A string value that specifies the name of a variable to look in the array of parameters set via
GET, POST, or COOKIE.

default_value

A boolean value that is true if it is necessary to return the default value of this variable from
the common array of parameters set via GET, POST, and COOKIE in case the specified
variable has not been set in it. By default, it is set to false.
Returns

A string value of the specified variable.

Remarks

49

In case the parameter name is specified incorrectly and Plesk fails to find it in the global array
of parameters, it throws Plesk fatal exception.

Include: pm.php.

pm_get locale

Gets the locale currently set for this session in the global set of parameters.
Syntax

pm_get locale()

Returns

A string value with the current locale.

Include: pm.php.

pm_go_to

Opens a certain URL in the specified window frame in the browser, plus allows to specify some
actions to perform before URL is opened.

Syntax
pm_go_to ($url, $target, $onLoad)
Parameters
url
A string value with the URL to load.
target

A string value that specifies the target window frame. By default, the value is ‘self’, which
means that URL will be loaded to the currently active window frame.

onLoad

A string value with the code in Javascript that will be executed before the URL is loaded.
By default, this value is set to false.

Returns
Nothing.
Remarks

A well-formed Javascript text passed in via the onLoad parameter should not contain double
quotes.

Include: pm.php.

50

pm_go_to_uplevel

Loads the upper-level URL to the currently active window frame in the browser. Also, allows to
specify some actions to perform before URL is opened.

Syntax

pm_go_to_uplevel ($page, $onLoad)
Parameters

page

A string value that specifies the page from which to go up. By default, the value is NULL
(which means the current page).

onLoad

A string value with the code in Javascript that will be executed before the URL is loaded.
By default, the value is false.

Returns
Nothing.
Remarks

The page parameter can hold any HTML page identifier specified by the developer for use in a
module.

A well-formed Javascript text held in the onLoad parameter should not contain double quotes.

Include: pm.php.

pm_isset_gpc

Checks whether the specified variable is present in the array of parameters passed in to a script
via GET, POST, or COOKIE HTML method.

Syntax

pm_isset_gpc ($name)
Parameters

name

A string value that specifies the name of a variable to look in the array of parameters set via
GET, POST, or COOKIE.

Returns

A boolean value. Is true if the specified variable is set in the array of parameters passed in to a
script via GET, POST, or COOKIE. false otherwise.

51

Include: pm.php.

pm_ldate
Returns the specified date in the format defined in the $def_date_format global variable.
Syntax
pm_Ildate ($timestamp, $format, $gmdate)
Parameters
timestamp

A string value with the specified time. Optional. Is equal to the current time by default.
format

A string value with the format of the time passed in. By default, the string is empty.
gmdate

A boolean value that is true if the resulting time should be GMT (Greenwich Mean Time),
false otherwise. Is false by default.

Returns

A string value with the date formatted according to the mask stored in the
$def_date_Tormat global variable.

Remarks

If the format parameter is empty, the format of the $def_date_format global variable will
be applied.

Include: pm.php.

pm_ldatetime

Returns the specified date in the format defined in the $def_datetime_format global
variable.

Syntax
pm_ldatetime ($timestamp, $format, $gmdate)
Parameters
timestamp
A string value with the specified time. Optional. Is equal to the current time by default.

format

52

A string value with the format of the time passed in. By default, the string is empty.
gmdate

A boolean value that is true if the resulting time should be GMT (Greenwich Mean Time),
false otherwise. Is false by default.

Returns

A string value with the timestamp formatted according to the mask stored in the
$def_datetime_format global variable.

Remarks

If the format parameter is empty, the format of the $def_datetime_format global
variable will be applied.

Include: pm.php.

pm_link_button

Returns the HTML formatted code used to represent a link button HTML element on the HTML
page.

Syntax

pm_link_button ($name, $conhelp, $href, $enabled,
$tabindex, $new_window, $lock)

Parameters
name

A string value with the link button name.
conhelp

A string value with the context help index for this button. By default, this parameter holds
an empty space.

href

A string value with a reference to the specified URL. By default, this parameter holds “#’,
which means that a mouseclick on this link button will open the same page on which this link is
clicked.

enabled

A boolean value with the button status. Is set to true if the button is enabled, false otherwise.
The default value is true.

tabindex

53

A boolean value that is true if the button should have a tab index on the form, false
otherwise. The default value is false.

new_window

A boolean value that is true if a mouseclick on this button should open URL in a new
window of a browser, false otherwise. The default value is false.

lock
A boolean value that is true if the button is locked, false otherwise. The default value is true.
Returns

A string value that holds the HTML formatted code of the link button’s representation on the
HTML page.

Remarks

If a button name consists of more than one word, the relevant name parameter should look as a
set of words glued with the *_” (underscore) character.

A valid conhelp parameter should go without the ‘b_’ prefix.

Include: pm.php.

pm_lmsg

Translates the specified index into the message text taking into account the current locale
settings.

Syntax

pm_Imsg ($index, $arl, $ar2, $ar3, $ar4, $ar5, $ar6, $ar7,
$ar8)

Parameters
index

A string value with index of the message to extract.
arl

A string value with a reserved string parameter. By default, it holds an empty string (*).
ar2

A string value with a reserved string parameter. By default, it holds an empty string (* *).
ar3

A string value with a reserved string parameter. By default, it holds an empty string (“).

54

ar4

A string value with a reserved string parameter. By default, it holds an empty string (*).
ars

A string value with a reserved string parameter. By default, it holds an empty string (“).
aré

A string value with a reserved string parameter. By default, it holds an empty string (* *).
ar7

A string value with a reserved string parameter. By default, it holds an empty string (“).
ar8

A string value with a reserved string parameter. By default, it holds an empty string (“ *).
Returns

A string value that holds a localized message extracted by the specified index from a
localization file referring to a current locale.

Remarks

It is recommended that parameters arl to ar8 are always left as they are. This function refers to
the Zend engine.

Include: pm.php.

pm_ltime
Returns the specified date in the format defined in the $def_time_format global variable.
Syntax
pm_Itime ($timestamp, $format, $gmdate)
Parameters
timestamp

A string value with the specified time. Optional. Is equal to the current time by default.
format

A string value with the format of the time passed in. By default, the string is empty (* *).
gmdate

A boolean value that is true if the resulting time should be GMT (Greenwich Mean Time),
false otherwise. Is false by default.

55

Returns

A string value with the time formatted according to the mask stored in the
$def_time_Tormat global variable.

Remarks

If the format parameter is empty, the format of the $def_time_format global variable will
be applied.

Include: pm.php.

pm_plesk mail

Forms an email envelope for Plesk email user on basis of the standard set of information (to,
subject, message, etc).

Syntax

pm_plesk_mail ($to, $subject, $message,
$additional_smtp headers, $from_header)

Parameters
to

A string value that enumerates email addresses of the recipients.
subject

A string value with the message subject.
message

A string value with the text of the message.
additional_smtp_headers

A boolean value which is true if some extra smtp headers need to be formed, false
otherwise. Is false by default.

from_header

A boolean value that is true if the FROM header needs to be added to the letter’s envelope,
false otherwise. Is false be default.

Returns
A string value that contains the resulting text of the email envelope.

Remarks

56

A valid to parameter accepts a string with one to many addressees formatted as follows:

"Personl <email@domain.com>, assa@bessa.com, ...". Also, itcanacceptan
array of addressees: array($emaill => Personl, ...)
Include: pm.php.

pm_psaerror
This function throws Plesk fatal exception.
Syntax
pm_psaerror ($message)
Parameters
message
A string value with a system message to display if Plesk fatal exception occurs.
Returns
Nothing.

Include: pm.php.

pm_safetyhtml

Modifies the specified HTML string (replaces HTML escape sequences like ‘}’, *{’, quotes with
codes, etc.).

Syntax
pm_safetyhtml ($string)
Parameters
string
A string value with the HTML text to format.
Returns
A string value with the modified HTML text.

Include: pm.php.

pm_set_gpc

Sets the specified variable to the global array of parameters passed in to a script via GET,
POST, or COOKIE HTML method.

Syntax

57

pm_set_gpc ($name, $value)
Parameters
name

A string value that specifies the name of a variable to set to the array of parameters received
via GET, POST, or COOKIE.

value

A string value to set to the specified variable in the array of parameters obtained via GET,
POST, or COOKIE.

Returns
Nothing.

Include: pm.php.

pm_size b_printing

Accepts the number of bytes and returns the formatted string with the value in bytes for
printing.

Syntax
pm_size b _printing ($bytes, $addB, $precision)
Parameters
bytes
An integer value that specifies the number of bytes.
addB

A boolean value that is true if the ‘bytes” word should be added to the resulting string, false
otherwise. The default setting is false.

precision

A string value that specifies precision of the value to show. It is set to -1 by default (only the
integer part of the value should be shown).

Returns
A string value that holds the passed in number of bytes in a special format.

Code Example

58

$num_bytes = 1024;

$num_bytes to print = pm_size b printing($num bytes, true, 2);
$num_bytes_to_printl = pm_size_b_printing($num_bytes, true, 0);
$num_bytes_to_print2 = pm_size_b_printing($num_bytes, true);
$num_bytes to print3 = pm_size b printing($num_bytes);

echo $num_bytes to print;

echo $num_bytes to printl;

echo $num_bytes to print2;

echo $num_bytes to_print3;

// the result will look as follows:

// 1024 .00 bytes

// 1024 . bytes

// 1024 . bytes

// 1024.

Remarks

The above code snippet shows the results of three invocations of this function, each time with
different parameters.

Include: pm.php.

pm_size_kb_printing

Accepts the number of bytes and returns the formatted string with the value in kilobytes for
printing.

Syntax
pm_size_kb_printing ($bytes, $addB, $precision)
Parameters
bytes
An integer value that specifies the number of bytes.
addB

A boolean value that is true if the ‘kilobytes’” word should be added to the resulting string,
false otherwise. The default setting is false.

precision

A string value that specifies precision of the value to show (if the value in KB is float type

formatted). It is set to -1 by default (only the integer part of the value in KB should be shown).

Returns

A string value that holds the passed in number of bytes transferred to KB and formatted as
specified.

59

Code Example
$num_bytes = 5000;

$num_bytes_to_print = pm_size kb _printing ($num_bytes, true, 2);
$num_bytes_to_printl pm_size_kb_printing ($num_bytes, true, 0);
$num_bytes_to_print2 pm_size_kb_printing ($num_bytes,true);
$num_bytes_to_print3 = pm_size_kb_printing ($num_bytes);

echo $num_bytes to_print;

echo $num_bytes_to_printl;
echo $num_bytes to_print2;
echo $num_bytes to_print3;

// the result will look as follows:
// 4.88 kilobytes

// 4. kilobytes

// 5. kilobytes

// 5.

Remarks

The above code snippet shows the results of four invocations of this function, each time with
different parameters.

In case the precision parameter is a zero or a positive value, the function calculates the float
number of kilobytes in the passed in number of bytes. Then the function trims the resulting
value from the right so that only the required number of fractional digits is left.

In case the precision parameter is set to a negative value or not specified, the function transfers
the passed in number of bytes to kilobytes and then rounds up the result to its integer part. The
resulting string contains an integer part of the value and a dot delimiter, the fractional part of the
value is missing.

Include: pm.php.

pm_size_mb_printing

Accepts the number of bytes and returns the formatted string with the value in megabytes for
printing.

Syntax
pm_size_mb_printing ($bytes, $addB, $precision)
Parameters
bytes
An integer value that specifies the number of bytes.

addB

60

A boolean value that is true if the ‘megabytes’ word should be added to the resulting string,
false otherwise. The default setting is false.

precision

A string value that specifies precision of the value to show (if the value in MB is float type
formatted). It is set to -1 by default (only the integer part of the value in MB should be shown).

Returns

A string value that holds the passed in number transferred to MB and formatted as specified.
Code Example

$num_bytes = 5 000 000;

$num_bytes_to_print = pm_size_mb_printing ($num_bytes, true, 2);
$num_bytes_to_printl pm_size_mb_printing ($num_bytes, true, 0);

$num_bytes_to_print2 pm_size_mb_printing ($num_bytes,true);
$num_bytes_to_print3 pm_size_mb_printing ($num_bytes);

echo $num_bytes to_print;

echo $num_bytes to_printl;
echo $num_bytes to_print2;
echo $num_bytes to print3;

// the result will look as follows:
// 4.76 megabytes

// 4. megabytes

// 5. megabytes

// 5.

Remarks

The above code snippet shows the results of four invocations of this function, each time with
different parameters.

In case the precision parameter is a zero or a positive value, the function calculates the float
number of megabytes in the passed in number of bytes. Then the function trims the resulting
value from the right so that only the required number of fractional digits is left.

In case the precision parameter is set to a negative value or not specified, the function transfers
the passed in number of bytes to megabytes and then rounds up the result to its integer part. The
resulting string contains an integer part of the value and a dot delimiter, the fractional part of the
value is missing.

Include: pm.php.

pm_size pretty printing

A universal function that converts the passed in number of bytes to the best format (bytes/
KB/MB/GB/TB) so that the resulting value has a non-zero integer part as small as possible.

Syntax

61

pm_size_pretty printing ($bytes, $addB, $precision)
Parameters
bytes
An integer value that specifies the number of bytes.
addB

A boolean value that is true if the ‘bytes’ suffix should be added to the resulting string in
addition to the ‘kilo’/’mega’/’giga’/’tera’ word, false otherwise. The default setting is false.

precision

A string value that specifies precision of the resulting value to show. It is set to -1 by default
(only the integer part of the value should be shown).

Returns

A string value that holds the passed in number of bytes transferred to the best format and output
as specified.

Code Example

$num_bytes to print = pm_size pretty printing (1023, true, 2);
$num_bytes to printl pm_size mb_printing (5000, true, 2);
$num_bytes_to_print2 pm_size_mb_printing (5000000, true);
$num_bytes_to_print3 pm_size_mb_printing (5000000000, false, 2);
$num_bytes_to_print4 pm_size_mb_printing (5000000000000) ;

echo $num_bytes_to_print;

echo $num_bytes_to_printl;
echo $num_bytes_to_print2;
echo $num_bytes_to_print3;

echo $num_bytes _to_print4;

// the result will look as follows:
// 1023 bytes

// 4.88 kilobytes

// 5. megabytes

// 4.65 giga

// 5. tera

Remarks

The above code snippet shows the results of four invocations of this function, each time with
different parameters.

If the bytes parameter is less than 1024 bytes (KB), the function returns a string with an integer
formatted number of bytes. The precision parameter is not considered.

62

In case the precision parameter is a zero or a positive value, the function calculates the float
number in KB/MB/GB/TB (the best format is selected). Then the function trims the resulting
value from the right so that only the required number of fractional digits is left.

In case the precision parameter is set to a negative value or not specified, the function transfers
the passed in number of bytes to KB/MB/GB/TB (the best format is selected) and then rounds
up the result to its integer part. The resulting string contains an integer part of the value and a
dot delimiter, the fractional part of the value is missing.

If the addB parameter is set to true, then the string contains the value and the relevant
description (kilobytes, megabytes, gigabytes, terabytes). In case addB is set to false, the ‘bytes
suffix is missing, and the string contains the short description (kilo, mega, giga, tera).

Include: pm.php.

pm_time_pretty printing
A universal function that converts the number of seconds to a pretty format. If the number of
seconds is less than a day, the time format is selected, otherwise the day and time format is
applied.
Syntax
pm_time_pretty printing ($tval, $format)
Parameters
tval
A string value with the number of seconds to print.
format
A string value with the time format to apply. By default, the string is empty (* *).
Returns
A string value formatted as specified.

Remarks

If the format parameter is not specified, the function applies default formats
$def _date format and $def time Fformat.

Include: pm.php.
pm_topnote

The function adds a warning message with the specified text to the global array of messages of
type MSG_WARNING according to its ID.

Syntax

63

pm_topnote ($msg, $id)
Parameters
msg

A string value with a message test.

A string value with the identifier of the warning message.
Returns
Nothing.
Remarks

The message will remains in the array until it is removed from it explicitly. I.e. it doesn’t
disappear once displayed.

Include: pm.php.

pm_util_exec

Checks whether the utility exists and can be executed with the specified parameters. If the
checkup is successful, safely runs the utility within Plesk exec wrapper.

Syntax
pm_util_exec ($command, $args, $which, $mod_name)
Parameters
command
A string value with the name of the utility to run.
args

A string value with the array of arguments to use when triggering the utility. By default, an
empty array is set.

which

A string value that specifies the approach to execution error reporting. If set to ‘msg’, tells
the function to display a standard error message and to return false. If set to ‘Ist’, tells the
function to display a standard error message and to return false if the utility fails, otherwise to
return an array of strings from the utility’s output. By default, the ‘msg’ value it specified.

mode_name

A stirng value with the module name the utility refers to. Is NULL by default.

64

Returns

In case the which parameter is ‘msg’, a boolean value is returned - true if the utility has been
executed OK, false otherwise. In case the which parameter is ‘Ist’, a mixed value is returned - an
array of strings from the utility’s output if the utility has been executed OK, false otherwise.

Include: pm.php.

pm_util_io_exec

Safely runs the specified utility within Plesk exec wrapper. Passes in the data to the utility’s
stdin and reads the result from its stdout.

Syntax
pm_util_io_exec ($cmd, $args, $in_str, &$out, $mod_name)
Parameters
command
A string value with the name of the utility to run.
args

A string value with the array of arguments to use when triggering the utility. By default, an
empty array is set.

in_str

A string value with the data to pass in to the utility’s input.
out

A reference of a string value with the data read from the utility’s output.
mode_name

A stirng value with the module name the utility refers to. Is NULL by default.
Returns
A boolean value which is true if the utility has been executed OK, false otherwise.

Include: pm.php.

pm_warning

Adds a warning message with the specified text and without ID to the global array of messages
of type MSG_WARNING.

Syntax

65

pm_warning ($msg)
Parameters
cmd
A string value with the message text to display.
Returns
Nothing.
Remarks
The message is removed from the array once displayed.

Include: pm.php.

pm_pathbarMaker

Creates an instance of the pm_Pathbar class that presents a pathbar GUI control on the
HTML page.

Syntax

pm_pathbarMaker ()

Parameters

No

Returns

An instance of the pm_Pathbar class.
Remarks

The function is designed to control the creation of the only instance of the bathbar GUI control
on the HTML page. If the creation of the instance fails, Plesk throws an error message.

Include: pm.php.

pm_pathbarDestructor

Saves parameters of the pathbar GUI control to the gobal scope before this control is destroyed.
Syntax

pm_pathbarDestructor()

Parameters

No

Returns

A boolean value which is always true, both in case parameters have been flushed successfully
or in case the update is not required.

Remarks

If called for the form not having an instance of the pathbar GUI control yet, creates this
instance. Next step is saving pathbar parameters to the global scope.

Include: pm.php.

Modules API Classes

This section of Plesk Modules API Reference contains syntax and semantic information for the
Plesk Modules API classes that can be used for programming purposes when creating a module.

CLASS DESCRIPTION

pm_Checker Provides a variety of member functions for data
format checkup.

pm_cList Presents a GUI element of the same name. Is
abstract, needs to be extended.

pm_Form Implements the creation of the HTML form based
on the specified set of templates. Is abstract, needs
to be extended.

pm_Pathbar Implements the path bar GUI element. Is abstract,
needs to be extended.

class pm_Checker

The pm_Checker class provides a variety of member functions for data format checkup.

Methods Description
login ($login) Checks whether the Plesk Server

Administrator login is valid.

sys login ($login)

Checks whether the system login is
valid.

sys passwd ($login, $password)

Checks whether the system
password is valid.

ftp_login ($login)

Checks whether the FTP login is
valid.

67

ftp_passwd ($password)

Checks whether the FTP password
is valid.

pg_login ($login)

Checks whether the PostgreSQL
database login is valid.

pg_passwd ($login, $password)

Checks whether the PostgreSQL
database password is valid.

mailname ($mail name)

Checks whether the specified email
name is valid.

mail passwd ($login, $password)

Checks whether the password to the
specified email account is valid.

resp name ($resp name)

Checks whether the name of an
autoresponder is valid.

domain ($dom_name)

Checks whether the specified
domain name is valid.

idn rfc domain ($idn dom name)

Checks whether the specified
domain name in IDN format is
valid..

rfc_domain ($dom_name)

Checks whether the specified
domain name is valid as per RFC
1035.

cert domain ($dom_name)

Checks whether the domain name
specified in the SSL certificate is
valid.

idn_domain ($idn_dom name)

Checks whether the IDN formatted
domain name is valid.

atdomain ($name)

Validates both parts of an email
name (standing before and after the
at-sign).

subdomain ($name)

Checks whether the subdomain
name is valid.

idn_subdomain ($idn _name)

Checks whether the subdomain
name formatted as IDN is valid.

dns dom($dom name, $allow mask)

Checks whether the specified
domain name is well-formatted for
use in the DNS system.

dns dom t($dom name, $allow mask)

Checks whether the specified DNS
domain name can be used as a DNS
template.

68

chk ip t($ip address)

Checks whether the specified IP
address can be used in the DNS
template.

url($url, $proto required)

Checks whether the specified URL
is well-formatted.

localUrl($url)

Checks the local part of URL
(following the domain part) for
disallowed characters.

mailto($href)

Checks whether a “‘mailto’ string is
well-formatted.

shortUrl($url)

Checks whether the specified short
URL (like http://domain.com) is
well-formatted.

protectedDirName($dir)

Checks whether the specified
protected directory name is well-
formatted.

siteApplnstallPrefix($install prefix)

Checks whether the specified
module application’s installation
directory name is well-formatted.

realm($realm) Checks whether the specified
caption displayed in the
authorization window for a
protected web folder is well-
formatted.

dbName($db) Checks whether the specified
database name is formatted
properly.

dbUserName($usr) Checks whether the specified DB

user name is formatted properly.

personalName($name)

Checks whether the specified
personal name is formatted

properly.

companyName($company)

Checks whether the specified
company name is formatted

properly.

phone($phone)

Checks whether the specified phone
number is well-formatted.

fax($fax)

Checks whether the specified fax
number is well-formatted.

69

email($email) Checks whether the specified email
address is well-formatted.

address($address) Checks whether the specified
address is well-formatted.

city($city) Checks whether the specified city

name is well-formatted.

state($state, $country)

Checks whether the specified state
name is well-formatted.

zip($zip, $country)

Checks whether the specified zip
code is well-formatted.

country($country) Checks whether the specified
country code is well-formatted and
exists in the list of country codes of
Plesk.

us_states() Returns an array of US states and
places of US military presence.

ca_states() Returns an array of Canadian states.

ip($ip) Checks whether the specified IP

address is well-formatted.

ip address and mask($ip address, $ip mask,

$valid)

Checks whether the specified IP
address presents the expected type
of IP address (hon-masked IP
address, masked IP address,
masked IP range, etc.).

ip_interface($ip _address, $ip _mask)

Checks whether the specified IP
address and IP mask are valid
settings for a network interface.

ip address($str, $valid, $valid formats)

Checks whether the specified IP
address satisfies the selected
validation rule and IP format.

cidr addr($cidr)

Checks whether the IP address
specified in the CIDR notation is
well-formatted.

mask($mask)

Checks whether the specified subnet
IP mask is valid.

netaddr($netaddr, $netmask)

Checks whether the IP address
presents a network address.

filename($filename) Checks whether the specified file
name is formatted properly.

filepath($filepath, $base, $user) Checks whether the path exists and
the specified user has necessary
access permissions for this folder.

int($num) Checks whether the specified
integer value is well-formatted.

spamassassinPattern($pattern) Validates the SpamAssassin pattern
that specifies groups of addresses
for white and black lists.

FTPMessage($msq) Checks whether the specified FTP
message is well-formatted.

Include: pm.php.

pm_Checker:: login Method
Checks whether Plesk Server Administrator’s login is valid.

Syntax
public static function login ($login)
Parameters
login
A string value that specifies Plesk Server Administrator’s login.
Returns
An integer which is 1 if the login is considered valid, false (0) otherwise.
Remarks
A valid Plesk Server Administrator login should be 1 to 20 characters long, its first character
being a Latin letter or a digit, and its other characters being Latin letters, digits, and characters
‘_” (underscore), “.” (dot), and ‘-’ (hyphen).

pm_Checker:: sys_login Method
Checks whether the system login is valid.

Syntax
public static function sys_login ($login)
Parameters

login

71

A string value that specifies the system login.
Returns
An integer which is 1 if the login is valid, false (0) otherwise.
Remarks
A system login can be an empty string or a string up to 17 characters long. A valid system login

should contain a lowercase Latin letter at its first position, and the remaining characters can be
lowercase Latin letters, digits, and characters *_” (underscore) and ‘-’ (hyphen).

pm_Checker:: sys_passwd Method
Checks whether the system password is valid.

Syntax
public static function sys_passwd ($login, $password)
Parameters
login
A string value that specifies the system login.
password
A string value that specifies the system password.
Returns
A boolean set to true if the system password is valid, false otherwise.
Remarks

A valid system password allows ASCII characters (with codes 0 to 127) only. Also, it shouldn’t
contain the system login, and it should be 5 to 14 characters long.

pm_Checker:: ftp_login Method
Checks whether the FTP login is valid.

Syntax
public static function ftp_login ($login)
Parameters
login
A string value that specifies FTP login.
Returns

An integer which is 1 if the login is valid, false (0) otherwise.

72

Remarks

A valid login consists of 0 to 16 symbols and can contain Latin letters, digits, and characters
(underscore) and ‘-* (hyphen).

pm_Checker:: ftp_passwd Method
Checks whether the FTP password is valid.

Syntax
public static function ftp_passwd ($password)
Parameters
password
A string value that specifies FTP password.
Returns
A boolean - true if the FTP password is valid, false otherwise.
Remarks
A valid FTP password can be an empty string or a string of ASCII symbols (with codes 0 to

127) only. Escape characters ‘\n” (LF, ASCII code 10) and “\r’ (CR, ASCII code 13) are not
allowed.

pm_Checker:: pg_login Method
Checks whether the PostgreSQL database login is valid.

Syntax
public static function pg login ($login)
Parameters
login
A string value that specifies PostgreSQL database login.
Returns
An integer which is 1 if the PostgreSQL database login is valid, false (0) otherwise.
Remarks
A PostgreSQL database login can be an empty string or a string up to 17 characters long. A

valid login should contain a lowercase Latin letter at its first position, and the remaining
characters can be lowercase Latin letters, digits, and characters *_* (underscore) and ‘-’

(hyphen).
pm_Checker:: pg_passwd Method
Checks whether the PostgreSQL database password is valid.

73

Syntax
public static function pg_passwd ($login, $password)
Parameters
login
A string value that specifies the PostgreSQL database login.
password
A string value that specifies the PostgreSQL database password.
Returns
A boolean set to true if the PostgreSQL database password is valid, false otherwise.
Remarks

A valid PosrgreSQL database password allows ASCII characters (with codes 0 to 127) only.
Also, it shouldn’t contain the system login, and it should be 5 to 14 characters long.

pm_Checker:: mailname Method
Checks whether the specified email name is valid.

Syntax
public static function mailname ($mail_name)
Parameters
mail_name
A string value that specifies the email name to check.
Returns
An integer which is 1 if the email name is considered valid, O otherwise.
Remarks
A valid name of the email specified in the mail_name parameter can contain letters, digits, dots,

_” (underscore), ‘+” and “- (hyphen) characters. It should begin with a letter, digit, underscore,
or a hyphen. E.g. ann.miller-77.

pm_Checker:: mail_passwd Method
Checks whether the password to the specified email account is valid.

Syntax
public static function mail_passwd ($login, $password)

Parameters

74

login
A string value that specifies the email account name.
password
A string value that specifies the password to the email account.
Returns
A boolean set to true if the email password is valid, false otherwise.
Remarks
A valid email password should be 5 to 14 characters long, it should contain ASCII characters

(with codes 0 to 127) only, and a password shouldn’t contain the name of the related email
account.

pm_Checker:: resp_name Method
Checks whether the specified string can be used as a valid name of an autoresponder.

Syntax
public static function resp_name ($resp_name)
Parameters
resp_name

A string value that specifies the name of an autoresponder to check.
Returns
A boolean set to true if the name of the autoresponder is valid, false otherwise.
Remarks

The autoresponder name shouldn’t be empty or longer than 245 characters.

pm_Checker:: domain Method
Checks whether the specified domain name is valid.

Syntax
public static function domain ($dom_name)
Parameters
dom_name
A string value that specifies the domain name to check.

Returns

75

A boolean set to true if the domain name is well-formatted, false otherwise.

Remarks

This function is a particular case of pm_Checker::rfc_domain, except it imposes tighter
restrictions on the length of the passed in domain name.

A valid domain name shouldn’t be longer than 245 characters, shouldn’t be ‘localhost.rev’ or
ending with “.in-addr.arpa’ (reverse resolution from an IP address to the fully qualified domain
address). IP addresses are also disallowed.

A valid domain name specified in the dom_name parameter should be formatted as a series of
labels glued with “.” (dot) characters, i.e. <label>][.<label>[..]], each label up to 63
characters long, beginning with a Latin letter and composed of Latin letters (A-Z, a-z), digits (0-
9) and “-’ (hyphen) characters. E.g. Plesk-8 _main-support.support.com.

pm_Checker:: idn_rfc_domain Method

Checks whether the specified domain name in IDN format is valid.
Syntax
public static function idn_rfc domain ($idn_dom name)
Parameters
idn_dom_name
A string value that specifies the domain name in IDN format.
Returns
A boolean set to true if the domain name is well-formatted, false otherwise.
Remarks

This function is a particular case of pm_Checker::rfc_domain, except it converts the passed in
domain name to the ASCII format first.

A valid domain name shouldn’t be longer than 255 characters, shouldn’t be ‘localhost.rev’ or
ending with “.in-addr.arpa’ (reverse resolution from an IP address to the fully qualified domain
address). IP addresses are also disallowed.

A valid domain name specified in the idn_dom_name parameter should be formatted as a series
of labels glued with “.” (dot) characters, i.e. <label>[.<label>[..]], each label up to 63
characters long, beginning with a Latin letter and composed of Latin letters (A-Z, a-z), digits (O-
9) and ‘-’ (hyphen) characters. E.g. Plesk-8 _main-support.support.com.

pm_Checker:: rfc_domain Method

Checks whether the specified domain name is valid according to RFC 1035.
Syntax

public static function rfc_domain ($dom_name)

76

Parameters
dom_name
A string value that specifies the domain name to check.
Returns
A boolean set to true if the domain name is well-formatted, false otherwise.
Remarks
A valid domain name shouldn’t be longer than 255 characters, shouldn’t be ‘localhost.rev’ or
ending with “.in-addr.arpa’ (reverse resolution from an IP address to the fully qualified domain

address). IP addresses are also disallowed.

A valid domain name specified in the dom_name parameter should be formatted as a series of
labels glued with “.” (dot) characters, i.e. <label>[.<label>[..]], each label up to 63
characters long, beginning with a Latin letter and composed of Latin letters (A-Z, a-z), digits (O-
9) and ‘-’ (hyphen) characters. E.g. Plesk-8 _main-support.support.com.

pm_Checker:: cert_domain Method
Checks whether the domain name specified in the SSL certificate is valid.

Syntax
public static function cert_domain ($dom_name)
Parameters
dom_name
A string value with the domain name specified in the SSL certificate.
Returns
An integer which is 1 if the login is valid, false (0) otherwise.
Remarks

The dom_name parameter can specify the entire domain name, e.g. plesk.com, or a range of
subdomains, which can be done using a wildcard, e.g. *.plesk.com. The allowed format is
<label>[.<label>[..]], where a label is a wildcard or a block of 63 characters or less,
beginning with a Latin letter and composed of Latin letters (A-Z, a-z), digits (0-9) and ‘-’
(hyphen) characters. The specified domain name shouldn’t be longer than 255 characters,
shouldn’t be ‘localhost.rev’ or ending with “.in-addr.arpa’ (reverse resolution from an IP address
to the fully qualified domain address). IP addresses are also disallowed.

pm_Checker:: idn_domain Method
Checks whether the IDN formatted domain name is valid.

Syntax

77

public static function idn_domain ($idn_dom_name)
Parameters
idn_dom_name

A string value that specifies the domain name in IDN format.
Returns
A boolean set to true if the domain name is well-formatted, false otherwise.
Remarks

This function is a particular case of pm_Checker::domain, except it converts the passed in
domain name to the ASCII format first.

A valid domain name shouldn’t be longer than 245 characters, shouldn’t be ‘localhost.rev’ or
ending with “.in-addr.arpa’ (reverse resolution from an IP address to the fully qualified domain
address). IP addresses are also disallowed.

A valid domain name specified in the idn_dom_name parameter should be formatted as a series
of labels glued with “.” (dot) characters, i.e. <label>[.<label>[..]], each label up to 63
characters long, beginning with a Latin letter and composed of Latin letters (A-Z, a-z), digits (0-
9) and *-’ (hyphen) characters. E.g. Plesk-8 _main-support.support.com.

pm_Checker:: atdomain Method
Validates both parts of an email name (standing before and after the at-sign).

Syntax
public static function atdomain ($name)
Parameters
name

A string value that specifies the email name to check.
Returns

A boolean set to true if both parts of the specified email name are well-formatted, false
otherwise.

Remarks
The first part (preceding the at-sign) can be an empty string or a string up to 17 characters long.

It should begin with a lowercase Latin letter and can contain lowercase Latin letters, digits, and
characters *_’ (underscore) and ‘-’ (hyphen).

78

The second part (following the at-sign) shouldn’t be longer than 245 characters, shouldn’t be
‘localhost.rev’ or ending with “.in-addr.arpa’. It cannot be an IP address either. It should present
a valid domain name formatted as a series of labels glued with *.” (dot) characters, i.e.
<label>[.<label>[..]], each label up to 63 characters long, beginning with a Latin letter
and composed of Latin letters (A-Z, a-z), digits (0-9) and ‘-’ (hyphen) characters.

pm_Checker:: subdomain Method
Checks whether the subdomain name is valid.

Syntax
public static function subdomain ($name)
Parameters
name

A string value that specifies subdomain name to check.
Returns
A boolean set to true if the subdomain name is well-formatted, false otherwise.
Remarks
A valid subdomain name shouldn’t be longer than 253 characters, shouldn’t be ‘localhost.rev’
or ending with “.in-addr.arpa’. IP addresses are also disallowed. It should be formatted as a
series of labels glued with “.” (dot) characters, i.e. <label>[.<label>[..]], each label up
to 63 characters long, beginning with a Latin letter and composed of Latin letters (A-Z, a-z),
digits (0-9) and ‘-’ (hyphen) characters.

pm_Checker:: idn_subdomain Method
Checks whether the subdomain name in IDN format is valid.

Syntax
public static function idn_subdomain ($idn_name)
Parameters
name
A string value that specifies the IDN formatted subdomain name.
Returns
A boolean set to true if the subdomain name is well-formatted, false otherwise.
Remarks

This function is a particular case of pm_Checker::subdomain, except it converts the passed in
subdomain name to the ASCII format first.

79

A valid subdomain name shouldn’t be longer than 253 characters, shouldn’t be “localhost.rev’
or ending with “.in-addr.arpa’. IP addresses are also disallowed. It should be formatted as a
series of labels glued with *.” (dot) characters, i.e. <label>[.<label>[..]], each label up
to 63 characters long, beginning with a Latin letter and composed of Latin letters (A-Z, a-2),
digits (0-9) and ‘-’ (hyphen) characters.

pm_Checker:: dns_dom Method

Checks whether the specified domain name is well-formatted for use in the DNS system.
Syntax
public static function dns_dom ($dom_name, $allow_mask)
Parameters
dom_name

A string value that specifies the domain name.
allow_mask

A boolean value that indicates whether the domain’s DNS name can be masked:
ALLOW_MASK if it can, NOT_ALLOW_MASK otherwise. By default, it is set to
ALLOW_MASK.

Returns

An integer which is 1 if the domain name format fits well to be used as a DNS name, 0
otherwise.

Remarks

The dom_name parameter can specify the entire domain name, e.g. plesk.com, or a range of
subdomains, which can be done using a wildcard, e.g. *.plesk.com.

The allow_mask parameter serves to indicate which format is used currently — the full one, or
the masked one.

Thus, if allow_mask is set to NOT_ALLOW_MASK, the full format of the DNS domain name
is expected and a standard format checkup is applied. A valid DNS domain name shouldn’t be
longer than 254 character and should have a format as follows: <label>_[<label>_[..]1,
where a label can be up to 63 characters long and composed of Latin letters, digits and ‘-’
(hyphen) characters.

If allow_mask is ALLOW_MASK, a valid DNS domain name can be formatted similar to a
non-masked DNS domain name, but the first label can be substituted by ‘*’ (a wildcard).

pm_Checker:: dns_dom_t Method
Checks whether the specified DNS domain name can be used as a DNS template.

Syntax

public static function dns_dom_t ($dom_name, $allow_mask)

80

Parameters
dom_name

A string value that specifies the domain name.
allow_mask

A boolean value that indicates whether the DNS name can be masked: ALLOW_MASK if it
can, NOT_ALLOW_MASK otherwise. By default, it is set to ALLOW_MASK.

Returns

An integer which is 1 if the specified domain name can be used as a DNS template, 0 otherwise.
Remarks

The dom_name parameter can specify the entire domain name, e.g. plesk.com, or a range of
subdomains, which can be done using a wildcard, e.g. *.plesk.com, or a DNS template, e.g.
<template>.plesk.com.

The allow_mask parameter serves to indicate which format is used currently — the full one, or
the masked one. If allow_mask is set to NOT_ALLOW_MASK, the full format of the domain

name is expected and a standard format checkup is applied. If allow_mask is ALLOW_MASK,
a wildcard is searched within the domain name and a proper format checkup is used.

A valid DNS template can have a format as follows:
T.](<label>_[<label>_[..11[T-1), where T stands for the <domain> template, and
<label> can be up to 63 characters long and composed of Latin letters, digits and “-* (hyphen)
characters. E.g. somedomain.<domain>.com. If the masked form of the DNS template is
allowed, the first label can be substituted by a wildcard (“*”).

pm_Checker:: chk_ip_t Method
Checks whether the specified IP address can be used in the DNS template.

Syntax
public static function chk_ip_t($ip_address)
Parameters
ip_address
A string value that specifies the IP address to check.
Returns

A boolean set to true if the IP address is not NULL or 0.0.0.0, or if it is equal to <ip>, false
otherwise.

pm_Checker:: url Method
Checks whether the specified URL is well-formatted.

Syntax

81

public static function url ($url, $proto_required)
Parameters
url
A string value that specifies the URL to check.
proto_required

A boolean value which is true if the URL requires a protocol (ftp://, http://, or https://),
false otherwise. Is set to false by default.

Returns
A boolean which is true if the URL format is considered valid, false otherwise.
Remarks

A valid URL can have a format as follows:
http(s)://<domain><path/Tile><parameters> or
ftp://<user:password><domain:port><path/file><parameters>.

If the proto_required parameter is set to false, the URL is missing its protocol part (ftp://,
http://, or https://).

The function checks the main part of URL that follows the protocol part (if any). The part in
focus shouldn’t contain space characters, single and double quotes, and apostrophes. Allowed

are the valid formats of a domain name (see the Remarks section for domain()) and of an IP
address (see the Remarks section for ip()).

pm_Checker:: localUrl Method
Checks the local part of URL (following the domain part) for disallowed characters.

Syntax
public static function localUrl ($url)
Parameters
url
A string value that specifies the URL to check.
Returns
An integer which is 1 if the local URL is well-formatted, O otherwise.
Remarks

A valid local URL should have a leading ‘/* (slash) character and shouldn’t contain space
characters, single and double quotes, and apostrophes.

pm_Checker:: mailto Method

82

Checks whether a “‘mailto’ string is well-formatted.
Syntax

public static function mailto ($href)
Parameters

href

A string value that specifies an email address referenced from an HTML page using the
‘mailto’ protocol.

Returns

A boolean which is true if the ‘mailto’ string is well-formatted, false otherwise.

Remarks

A valid “‘mailto’ string should have the following format: mailto:<email_name>@<domain>.
The <emai | _name> part should be at least 1 character long (it shouldn’t be missing), and it
can contain Latin letters, digits, dots, “_’ (underscore), ‘+” and ‘-’ (hyphen) characters. It should
begin with a Latin letter, a digit, an underscore, or a hyphen.

The <domain> part should be formatted as <label>[.<label>[..]], where a label is a
block of 63 characters or less, beginning with a Latin letter and composed of Latin letters (A-Z,
a-z), digits (0-9) and ‘-’ (hyphen) characters.

pm_Checker:: shortUrl Method
Checks whether the specified short URL (e.g. http://domain.com) is well-formatted.

Syntax
public static function shortUrl ($url)
Parameters
url
A string value that specifies the short URL to check.
Returns
A boolean which is true if the short URL is well-formatted, false otherwise.
Remarks

A valid short URL should have a format as follows: [<protocol>]<host_name>. The
protocol part (ftp://, http://, https://) can be missing. The host part can be a valid domain name
formatted as <label>[.<label>[..]], where a label is a block of 63 characters or less,
beginning with a Latin letter and composed of Latin letters (A-Z, a-z), digits (0-9) and ‘-’
(hyphen) characters. Or the host part can be a valid IP address.

83

pm_Checker:: protectedDirName Method
Checks whether the specified protected directory name is well-formatted.

Syntax
public static function protectedDirName ($dir)
Parameters
dir
A string value that specifies the directory name to check.
Returns
A boolean which is true if directory name is well-formatted, false otherwise.
Remarks
A well-formatted protected directory name can contain Latin letters, digits, dots (“.”), slash
characters (‘/”), and hyphens (‘-’). The following chains are not allowed: ‘/../, “//’, “./” and “../”
at the beginning of the directory name, ‘/./’, */..’, */.”, and “.” at the end of the directory name.

The directory name shouldn’t be longer than 247 characters after the leading and trailing spaces
and ‘/* characters are removed.

pm_Checker:: siteApplnstallPrefix Method
Checks whether the name of the installation directory for a site application is well-formatted.

Syntax

public static function siteApplnstallPrefix
($install_prefix)

Parameters
install_prefix

A string value that specifies the name of the folder where the site application will be
unpacked.

Returns

A boolean which is true if installation folder name is well-formatted, false otherwise.

Remarks

A valid name of a site application’s installation folder can contain Latin letters, digits,
underscores (“_"), dots (*.”), slash characters (‘/’), and hyphens (*-’). The chains that are not
allowed are: a leading or trailing dot (*.”) or a slash (‘/’), combinations like *./” and “../” at the
beginning of the install_prefix string, combinations like ‘/..”, /.” At the end of the install_prefix

string, and combinations like “/../°, “/I’, */.I” within this string.

The function returns true if the specified folder name satisfies the above listed conditions, or if
it is equal to SITEAPP_PREFIX_ROOT (the current folder).

84

pm_Checker:: realm Method

Checks whether the specified caption displayed in the authorization window for a protected web
folder is well-formatted.

Syntax

public static function realm ($realm)
Parameters

realm

A string value that specifies the text (the caption of a protected folder) shown in the
authorization window when a user tries to access a protected resource.

Returns
A boolean which is true if the caption of a protected folder is well-formatted, false otherwise.
Remarks

A valid protected folder caption shouldn’t be double quoted.

pm_Checker:: doName Method
Checks whether the specified database name is formatted properly.

Syntax
public static function dbName ($db)
Parameters
db
A string value that specifies the database name to check.
Returns
A boolean which is true if the DB name is well-formatted, false otherwise.
Remarks

A well-formatted database name should not be longer than 63 characters and should only consist
of Latin letters, digits, hyphens (*-”) and underscores (*_").

pm_Checker:: dbUserName Method
Checks whether the specified DB user name is formatted properly.

Syntax
public static function dbUserName ($usr)

Parameters

85

usr
A string value that specifies the DB user name to check.

Returns

A boolean which is true if the DB user name is well-formatted, false otherwise.

Remarks

A well-formatted DB user name should be 1 to 16 characters long, should begin with a Latin
letter, and shouldn’t contain anything except Latin letters, digits, and underscores (*_).

pm_Checker:: personalName Method
Checks whether the specified personal name is formatted properly.

Syntax
public static function personalName ($name)
Parameters
name
A string value that specifies the name to check.
Returns
A boolean which is true if the personal name is well-formatted, false otherwise.
Remarks

A well-formatted personal name can consist of any characters, should not be longer than 255
characters, and shouldn’t be enclosed in space or tab characters.

pm_Checker:: companyName Method
Checks whether the specified company name is formatted properly.

Syntax
public static function companyName ($company)
Parameters
company
A string value that specifies the company name to check.
Returns
A boolean which is true if the company name is well-formatted, false otherwise.

Remarks

86

A well-formatted company name should be 1 to 100 characters long.

pm_Checker:: phone Method
Checks whether the specified phone number is well-formatted.

Syntax
public static function phone ($phone)
Parameters
phone
A string value that specifies the phone number to check.
Returns
A boolean which is true if the phone number is well-formatted, false otherwise.
Remarks
A well-formatted phone number shouldn’t be longer than 30 characters, should start with a digit,

and can contain digits and delimiters like parentheses ‘(" and ‘)’, hyphens (*-’) and ‘+’
characters.

pm_Checker:: fax Method
Checks whether the specified fax number is well-formatted.

Syntax
public static function fax ($fax)
Parameters
fax
A string value that specifies the fax number to check.
Returns
A boolean which is true if the fax number is well-formatted, false otherwise.
Remarks
A well-formatted fax number shouldn’t be longer than 30 characters, should start with a digit,

and can contain digits and delimiters like parentheses ‘(" and ‘)’, hyphens (*-’) and *+’
characters.

pm_Checker:: email Method
Checks whether the specified email address is well-formatted.

Syntax

87

public static function email ($email)
Parameters
email

A string value that specifies the email name to check.
Returns
A boolean which is true if the email name is well-formatted, false otherwise.
Remarks
A valid email name should have the following format: mailto:<email_name>@<domain>.
The <emai | _name> part should be at least 1 character long (it shouldn’t be missing), and it
can contain Latin letters, digits, dots, “_’ (underscore), ‘+” and ‘-’ (hyphen) characters. It should
begin with a Latin letter, a digit, an underscore, or a hyphen.
The <domain> part should be formatted as <label>[.<label>[..]], where a label is a
block of 63 characters or less, beginning with a Latin letter and composed of Latin letters (A-Z,
a-z), digits (0-9) and ‘-’ (hyphen) characters.

pm_Checker:: address Method
Checks whether the specified address is well-formatted.

Syntax
public static function address ($address)
Parameters
address
A string value that specifies the address to check.
Returns
A boolean which is true if the address is well-formatted, false otherwise.
Remarks

A well-formatted address should be a string 1 to 255 characters long. Any characters are
allowed.

pm_Checker:: city Method
Checks whether the specified city name is well-formatted.

Syntax
public static function city ($city)

Parameters

88

city
A string value that specifies the city name to check.
Returns
A boolean which is true if the city name is well-formatted, false otherwise.
Remarks

A well-formatted city name should be a string 2 to 50 characters long.

pm_Checker:: state Method
Checks whether the specified state name is well-formatted.

Syntax
public static function state ($state, $country)
Parameters
state
A string value that specifies the state name to check.
country

A string value that specifies what country the state in focus belongs to. Holds an empty
string by default.

Returns
A mixed value. If the state name is well-formatted and the specified country is US or Canada,
returns the array of strings containing states and their 2-character codes in the format

“<state name>=><state_ code>". If the state name is well-formatted and the country is
unknown or not specified, returns the string with the passed in state, otherwise returns false.

Remarks

A well-formatted state name for a country different from US or Canada should be a string 0 to
50 characters long.

pm_Checker:: zip Method
Checks whether the specified zip code is well-formatted.

Syntax

public static function zip ($zip, $country)
Parameters

zip

A string value that specifies the zip code to check.

89

country

A string value that specifies what country the zip code belongs to. Holds an empty string by
default.

Returns
A boolean which is true if the zip code is well-formatted, false otherwise.
Remarks

A well-formatted zip code name should be a string 0 to 10 characters long. The US zip code
should be a string of digits in one of the following formats: XXxxx, XXXXX-XXXX.

pm_Checker:: country Method

Checks whether the specified country code is well-formatted and exists in the list of country
codes of Plesk.

Syntax
public static function country ($country)
Parameters
country

A string value that specifies the country code to check.
Returns

A boolean which is true if the country code is well-formatted and exists in the list of country
codes of Plesk, false otherwise.

Remarks

A well-formatted country code should be a 2-character string. E.g., CA, US, etc. The list of
country codes accepted by Plesk is available in the countries.php3 file. It is defined as
follows:

$countries = array (

"AF®" => "Afghanistan”,
"AX®" => "Aland Islands”,
"AL" => “Albania“,

Dz => "Algeria“,

"AS" => "American Samoa-“,
"AD® => "Andorra”,

"AO" => "Angola-“,

"Al" => "Anguilla“,

"AQ" => "Antarctica”,
"AG" => "Antigua and Barbuda“®,
"AR" => "Argentina”,

"AM® => "Armenia“,

"AW" => "Aruba“”,

"AU" => “Australia“”,

"AT" => “Austria”,

"AZ" => "Azerbaijan”,

90

"BS*
"BH"
“BD"
“BB"
"BY"
“BE"
"R7"
“BJ"
“BM"
“BT"
80"
"BA"
“BW"
“BV"
"BR"
10"
“BN"
"BG"
“BE"
81"
“KH"
“oM*
“CA"
"oyt
KY"
“CE"
“TD"
“cL"
“oN"
“ox*
“cct
“co"
“KM*
e
“CD"
“CK*
“CR"
“cl*
"HR"
“cu*
“cy"
“cz"
“DK*
“DJ*
“DM*
“DO"
“EC*
"EG*
=
-GQ*
"ER"
"EE"
“ET"
=
“Fo"
“FJ"
F1-
"FR"
“GE"
“PE"

"Bahamas”,

"Bahrain”,

"Bangladesh”,

"Barbados”,

"Belarus”,

"Belgium®,

"Belize",

"Benin”,

"Bermuda“”,

"Bhutan”®,

"Bolivia“,

"Bosnia and Herzegovina®,
“"Botswana”,

"Bouvet Island”,
"Brazil",

*British Indian Ocean Territory®,
"Brunei Darussalam”,
"Bulgaria“®,

"Burkina Faso",
"Burundi *,

"Cambodia“”,

"Cameroon” ,

"Canada”,

"Cape Verde-,

"Cayman Islands”,
"Central African Republic*®,
"Chad”,

"Chile",

"China”,

"Christmas Island”,
"Cocos (Keeling) Islands”,
"Colombia”,

"Comoros”,

"Congo-,

"Congo, the Democratic Republic of
"Cook Islands”,

"Costa Rica“",

"Cote D"lvoire”",
"Croatia“”,

"Cuba“,

"Cyprus”®,

"Czech Republic*®,
"Denmark”,

"Djibouti”,

"Dominica”,

“"Dominican Republic”,
"Ecuador”,

“Egypt”,

"El Salvador”®,
"Equatorial Guinea®,
"Eritrea”,

"Estonia“”,

"Ethiopia“”,

"Falkland Islands (Malvinas)"®,
"Faroe Islands”,

"Fiji-,

"Finland”,

"France”,

"French Guiana“®,

"French Polynesia“®,

the",

"TF® => "French Southern Territories”,
"GA" => "Gabon",

"GM* => “"Gambia®,

"GE" => "Georgia”,

"DE® => "Germany-,

"GH" => "Ghana“,

"Gl" => "Gibraltar”,

"GR" => "Greece",

"GL®" => "Greenland”,

"GD" => "Grenada-”,

GP => "Guadeloupe-,

"GU" => "Guam",

"GT" => "Guatemala®,

"GN®" => "Guinea”,

"GW® => "Guinea-Bissau-”,

*GY®" => "Guyana-“,

"HT" => "Haiti",

"HM® => "Heard Island and McDonald Islands*®,
"VA" => "Holy See (Vatican City State)",
"HN® => "Honduras®,

"HK® => "Hong Kong-,

"HU®" => “Hungary-®,

"IS* => “"lceland”,

"IN® => "India“”,

"ID" => "Indonesia”,

"IR" => "lran, Islamic Republic of",
"1Q" => "lIraq”,

"IE" => “lreland”,

"IL" => “lsrael”,

"IT" => "ltaly”,

"JM® => "Jamaica“,

"JP" => "Japan-®,

"JO" => "Jordan-,

"KZ® => "Kazakhstan-®,

"KE® => “Kenya“,

"KI® => "Kiribati”,

"KP®" => "Korea, Democratic People®s Republic of",
"KR®" => "Korea, Republic of",

"KW® => "Kuwait",

"KG" => "Kyrgyzstan-©,

"LA® => "Lao People®s Democratic Republic*®,
"LV® => "Latvia“,

"LB" => “Lebanon-,

"LS" => “Lesotho”,

"LR" => “Liberia“,

*LY" => "Libyan Arab Jamahiriya®,

"LIT => "Liechtenstein”,

"LT" => "Lithuania®,

"LU" => "Luxembourg”,

"MO™ => "Macao",

"MK®" => “"Macedonia, the Former Yugoslav Republic of",
"MG® => "Madagascar”,

MW" => “"Malawi”,

"MY®" => "Malaysia“®,

"MV® => "Maldives”,

*ML® => *Mali-,

"MT® => "Malta“”,

"MH®" => “"Marshall Islands”,

"MQ® => "Martinique”,

"MR® => "Mauritania”,

"MU® => "Mauritius”,

"YT®" => "Mayotte”,

"MX® => "Mexico",

"FM® => “"Micronesia, Federated States of",
"MD" => “"Moldova, Republic of",
"MC®" => "Monaco”,

"MN® => “"Mongolia“®,

"MS®" => "Montserrat-”,

"MA®" => "Morocco”,

"MZ® => "Mozambique-®,

"MM® => “Myanmar"®,

"NA®" => "Namibia",

"NR" => "Nauru",

"NP* => “Nepal",

"NL* => "Netherlands”,

"AN®" => "Netherlands Antilles”,
NC => "New Caledonia”,

*NZ® => "New Zealand®,

NI1 => "Nicaragua®,

"NE® => "Niger",

NG => “Nigeria~,

"NU" => "Niue",

NF => "Norfolk Island”,

*MP®" => "Northern Mariana Islands”,
NO" => "Norway",

"OM®™ => "Oman",

"PK®" => "Pakistan”,

"PW" => "Palau”,

"PS* => "Palestinian Territory, Occupied”,
"PA* => “Panama”,

"PG® => "Papua New Guinea-,

"PY" => "Paraguay”,

"PE" => "Peru",

"PH®" => "Philippines”,

"PN® => "Pitcairn”,

"PL®" => "Poland”,

"PT" => "Portugal”,

"PR*" => "Puerto Rico",

"QA" => "Qatar",

"RE® => "Reunion”,

"RO" => "Romania“,

"RU" => "Russian Federation”,
"RW® => "Rwanda“,

"SH" => "Saint Helena”,

"KN® => "Saint Kitts and Nevis”,
"LC" => "Saint Lucia”,

"PM* => "Saint Pierre and Miquelon®,
"VC*" => "Saint Vincent and the Grenadines”®,
"WS®" => "Samoa“,

"SM® => "San Marino”,

"ST" => "Sao Tome and Principe”,
"SA" => "Saudi Arabia“,

"SN* => "Senegal”,

"CS®" => "Serbia and Montenegro-,
"SC" => "Seychelles”,

"SL®" => "Sierra Leone",

"SG" => "Singapore”,

"SK®* => “"Slovakia“®,

SI => “Slovenia“,

"SB" => "Solomon Islands”,

"SO0" => "Somalia“,

"ZA" => "South Africa“,

"GS" => "South Georgia and the South Sandwich Islands”,
"ES" => "Spain-”,

"LK®" => "Sri Lanka",

*SD" => "Sudan”,

"SR*" => "Suriname”,

"*SJ" => "Svalbard and Jan Mayen®,
"SZ* => "Swaziland®,

"SE*" => "Sweden-”,

"CH" => "Switzerland",

"SY" => "Syrian Arab Republic”,
"TW® => "Taiwan®,

"TJ" => "Tajikistan®,

"TZ" => "Tanzania, United Republic of",
"TH®" => "Thailand”,

"TL® => "Timor-Leste",

*TG" => "Togo",

"TK® => "Tokelau®,

"TO" => "Tonga“,

*TT" => "Trinidad and Tobago~",
"TN®" => "Tunisia",

"TR®" => "Turkey",

"TM® => "Turkmenistan®,

"TC" => "Turks and Caicos Islands”,
"TV® => "Tuvalu®,

"UG" => "Uganda“,

"UA®" => “Ukraine-®,

"AE" => "United Arab Emirates”,
"GB" => "United Kingdom®,

"US® => "United States",

"UM® => "United States Minor Outlying Islands”,
"UY® => “Uruguay-,

"Uz" => "Uzbekistan”,

"VU®" => "Vanuatu®,

"VE®" => "Venezuela®,

"VN* => "Vietnam",

"VG* => "Virgin Islands, British®,
"*VI1* => "Virgin Islands, U.S.",
"WF® => "wallis and Futuna“®,

"EH" => "Western Sahara“,

"YE" => "Yemen",

"ZM® => "Zambia®,

"ZW" => "Zimbabwe",

);

pm_Checker:: us_states Method
Returns an array of US states and places of US military presence.

Syntax
public static function us_states ()
Parameters

No

94

Returns

An array of strings containing US states and their 2-character codes in the format
“<state_name>=><state code>".

pm_Checker:: ca_states Method
Returns an array of Canadian states.

Syntax

public static function ca_states ()
Parameters

No

Returns

An array of strings containing Canada states and their 2-character codes in the format
“‘<state_hame>=><state code>".

pm_Checker:: ip Method
Checks whether the specified IP address is well-formatted.

Syntax
public static function ip ($ip)
Parameters
ip
A string value that specifies the IP address to check.
Returns
A boolean which is true if the IP address is well-formatted, false otherwise.
Remarks
A well-formatted IP address is set using the dotted-decimal notation, e.g. 192.123.12.1. This

notation implies that an IP address consists of four blocks, each holding a value 0 to 255,
delimited by dots. A valid address shouldn’t be equal to 0.0.0.0.

pm_Checker:: ip_address_and_mask Method

Checks whether the specified IP address presents the expected type of IP address (non-masked
IP address, masked IP address, masked IP range, etc.).

Syntax

public static function ip_address_and_mask ($ip_address,
$ip_mask, $valid)

95

Parameters
ip_address

A string value that specifies the IP address used to specify a valid subnet.
ip_mask

A string value that specifies the IP mask used to specify a valid subnet.
valid

A string value that specifies the validation rule to apply. Is setto IP_ ADDRESS_ANY by
default. The following validation rules are available:

= |P_ADDRESS_ANY allows the use of all rules available.

= |P_ADDRESS_BLOCK checks whether the IP address presents an address block (a group
of network addresses) rather than a certain address.

= |[P_ADDRESS _NETMASK checks whether the given IP address is an individual IP address
with a mask.

= |IP_ADDRESS selects the rule that checks whether the given IP mask specifies an individual
IP address.

Returns

A boolean which is true if the specified IP address and IP mask are not 0.0.0.0 and the rule
applied to them succeeds. Otherwise returns false.

Remarks

This function applies the selected validation rule(s) to the combination of the IP address and IP
mask to check whether the IP address really belongs to the expected type (a non-masked IP
address, a masked IP address, an IP range, etc.).

= The validation rules work as follows:

= |P_ADDRESS_BLOCK checks whether the IP address specifies a group of IP addresses
(i.e. whether the IP address presents an address block). This rule requires the use of a
masked IP address format, and the requirement is that the host bits are set to ‘0’. E.g.
123.123.0.0/16 is arange of addresses, but 123.123.0.1/16 is a particular IP
address in a class B network.

= |P_ADDRESS_NETMASK checks whether the IP address is an individual masked IP
address. The rule succeeds if the IP mask specifies the entire IP address, e.g.
123.123.123.1/320r 123.123.123.1/255.255.255.255. The rule fails if the
IP address has ‘0’ bits in its host part, e.9. 123.123.0.0/16, or if it has all “1” bits in the
host part (a broadcast address), e.g. 123.123.123.255/255.255.255.0.

= |IP_ADDRESS checks whether the IP address in focus is a non-masked individual IP
address. E.g. 123.123.123.123.

= |P_ADDRESS_ANY indicates to the function that all the rules should be applied to the IP
address one after another until any of them succeeds. If none of the above rules succeeds,
this rule also fails.

pm_Checker:: ip_interface Method

96

Checks whether the specified IP address and IP mask are valid settings for a network interface.
Syntax
public static function ip_interface ($ip_address, $ip_mask)
Parameters
ip_address
A string value that specifies the IP address to check.
ip_mask
A string value that specifies the IP mask.
Returns

A boolean which is true if the specified IP address and IP mask are considered valid for a
network interface, false otherwise.

Remarks

The requirements to the format of an IP address are as follows: it shouldn’t be equal to 0.0.0.0,
neither should it belong to broadcast addresses (formatted as X.x.X.255 or 255.x.x.x) and
loopback addresses (127.x.x.x). A valid IP address that can be used for a network interface
should belong to class A, B, or C.

The specified IP mask shouldn’t be equal to 0.0.0.0 either.

Also, the function checks whether the specified IP address and IP mask do not specified a
subnet of the minimal size.

pm_Checker:: ip_address Method
Checks whether the specified IP address satisfies the selected validation rule and IP format.

Syntax

public static function ip_address ($str, $valid,
$valid_formats)

Parameters
str

A string value that specifies the IP address to check.
valid

A string value that specifies the validation rule to apply. Is set to IP_ ADDRESS_ANY by
default. The following validation rules are available:

. IP_ADDRESS_ANY allows the use of all rules available.

97

" IP_ADDRESS_BLOCK checks whether the IP address presents an address block (a
group of network addresses) rather than a certain address.

" IP_ADDRESS_NETMASK checks whether the given IP address is an individual IP
address with a mask.

. IP_ADDRESS selects the rule that checks whether the given IP mask specifies the
whole IP address.

valid_formats

A string value that specifies the allowed IP address format. Is set to
IP_ADDRESS_ANY_FORMAT by default. The following formats are available:

= |[P_ADDRESS MASK_FORMAT allows the IP address with a wildcard (“*”).
IP_ ADDRESS BLOCK_FORMAT allows the IP address in the CIDR notation
(XXX . XXX - XXX . XXX/Nn where n isanumber of *1” network bits in the mask).

= |IP_ADDRESS NETMASK FORMAT allows the IP address with a network mask in the
format as follows: XXX - XXX . XXX . XXX/ XXX - XXX . XXX . XXX
(<IP_address>/<I1P_mask>).

= |P_ADDRESS FORMAT allows a typical IP address in the dotted-decimal notation, i.e.
XXX 2 XXX o XXX 2 XXX .

= |P_ADDRESS_ANY_FORMAT allows the use of any above format.

Returns

A boolean which is true if the checked IP address satisfies the validation rule(s) applied and is
formatted as specified by the valid_formats constant. Otherwise returns false.

Remarks
This function validates the passed in IP address based on two constants that specify the format
of the IP address and the validation rule(s) that should be applied to discover whether the IP

address in focus really matches this format.

Here is the table of the admissible combinations of the validation rules and formats:

Format IP_ADDRESS IP_ADDRESS | IP_ADDRESS [IP_ADDRESS
_MASK _ _BLOCK _ _NETMASK __FORMAT

Validation rule(s) FORMAT FORMAT FORMAT

IP_ADDRESS_ BLOCK yes yes yes no

IP_ADDRESS NETMASK | no yes yes no

IP_ADDRESS yes yes yes yes

IP_ADDRESS BLOCK] yes yes yes no

IP_ADDRESS NETMASK
| 1P_ADDRESS

IP_ADDRESS BLOCK] yes yes yes no
IP_ADDRESS NETMASK

98

IP_ADDRESS NETMASK | yes yes yes no
| 1P_ADDRESS

IP_ADDRESS BLOCK] yes yes yes no
IP_ADDRESS

The validation rule(s) to apply is (are) specified in the valid parameter. They work as follows:

= |P_ADDRESS_BLOCK checks whether the IP address specifies a group of IP addresses
(i.e. whether the IP address presents an address block). This rule requires the use of a
masked IP address format, and the requirement is that the host bits are set to ‘0’. E.g.
123.123.0.0/16 is a range of addresses, but 123.123.0.1/16 is a particular IP
address in a class B network.

= |P_ADDRESS NETMASK checks whether the IP address is an individual masked IP
address. The rule succeeds if the IP mask specifies the entire IP address, e.g.
123.123.123.1/320r123.123.123.1/255.255.255._255. The rule fails if the
IP address has ‘0’ bits in its host part, e.g. 123.123.0.0/16, or if it has all *1’ bits in the
host part (a broadcast address), e.g. 123.123.123.255/255.255.255.0.

= |P_ADDRESS checks whether the IP address in focus is a non-masked individual 1P
address. E.g. 123.123.123.123.

= |P_ADDRESS_ANY indicates to the function that all the rules should be applied to the IP
address by after another until any of them succeeds. If none of the above rules succeeds, this
rule fails.

The valid_formats parameter informs the function what IP address format is validated.

= |P_ADDRESS _MASK_FORMAT means that an IP address with a wildcard (*) is expected.
A wildcard is allowed in place of any block, except the first one. E.g. 123.123.123_*.

= |P_ADDRESS BLOCK_FORMAT means that the IP address presents a group of addresses
and the CIDR notation is used to indicate the network size, e.g. 123.123.0.0/16 (16
leftmost bits are the network ones). Or this format can be applied to specify a particular IP
address and to provide it with the information about the network size, e.g.
123.123.123.123/24 (the host part is the rightmost block of 8 bits). If used to specify
a particular non-masked IP address, this format should look as follows:
123.123.123.123/32.

= |P_ADDRESS NETMASK_FORMAT is a standard dotted-decimal notation with a mask
(XXX - XXX 2 XXX - XXX XXX 2 XXX . XXX . XXX). The first part specifies the IP address, the
second part presents a mask applied to this address. This format can be used to specify a
group of IP addresses (address block), e.g. 123.123.123.0/255.255.255.0, a
masked IP address, e.g. 123.123.123.123/255.255.255.0, or a non-masked IP
address, e.g. 123.123.123.123/255.255.255._255.

= |P_ADDRESS _FORMAT is a non-masked dotted decimal format (XXX . XXX . XXX . XXX).
It is used to specify an individual IP address, no information about the network size
provided. E.g. 123.123.123.1.

= |P_ADDRESS _ANY_FORMAT means that the format check will be successful if the IP
address matches any of the above formats.

pm_Checker:: cidr_addr Method
Checks whether the IP address specified in the CIDR notation is well-formatted.

Syntax

99

public static function cidr_addr ($cidr)
Parameters
cidr
A string value that specifies the CIDR address to check.
Returns
A boolean which is true if the CIDR address is well-formatted, false otherwise.
Remarks

CIDR specifies an IP address range by the combination of an IP address and its associated
network mask. CIDR notation uses the following format: Xxx . XXX . XXX . XXxX/n where n is
the number of (leftmost) '1' bits in the mask. E.g., 192.168.12.0/23.

pm_Checker:: mask Method
Checks whether the specified subnet IP mask is valid.

Syntax
public static function mask ($mask)
Parameters
mask
A string value that specifies the IP mask to check.
Returns
A boolean which is true if the IP mask is valid, false otherwise.
Remarks
A well-formatted IP mask should be formed according to the dotted-decimal notation. This
notation implies that an IP mask consists of four blocks, each holding a value 0 to 255,
delimited by dots. Besides, an IP mask shouldn’t have its leftmost bits set to ‘0" and its
rightmost bits set to ‘1. The rightmost block(s) should be equal to 255, the intermediate blocks

are expected to be within the following range: 128, 192, 224, 240, 248, 252, 254, 255. The
leftmost block(s) should be set to 0.

pm_Checker:: netaddr Method
Checks whether the IP address presents a network address.

Syntax
public static function netaddr ($netaddr, $netmask)
Parameters

netaddr

100

A string value that specifies the IP address to check.
netmask
A string value with a subnet mask to be used for a checkup.
Returns
A boolean which is true if the IP address presents a network address, false otherwise.
Remarks

A valid format of an IP address or an IP mask is a dotted-decimal notation
(XXX 2 XXX - XXX - XXX).

pm_Checker:: filename Method
Checks whether the specified file name is formatted properly.

Syntax
public static function filename ($Ffilename)
Parameters
filename
A string value that specifies the file name to check.
Returns
A boolean which is true if the file name is well-formatted, false otherwise.
Remarks

A well-formatted file name should not contain single quotes.

pm_Checker:: filepath Method

Checks whether the path exists and the specified user has necessary access permissions for this
folder.

Syntax
public static function filepath ($filepath, $base, $user)
Parameters
filepath
A string value that specifies the file path to check.
base

A string value that specifies the folder within which to search the specified folder. Is set to
‘I’ by default.

101

user

A string value that specifies the user who should have access to the folder being checked. Is
set to 'psaadm’ by default.

Returns

A boolean which is true if the file path really exists in the specified base folder and the user has
access permissions for this folder, false otherwise.

pm_Checker:: int Method
Checks whether the specified integer value is well-formatted.

Syntax
public static function int ($num)
Parameters
num
A string value that specifies the integer value to check.
Returns
A boolean which is true if the passed in value is formatted as integer, false otherwise.
Remarks

An integer value format allows any number of decimal digits (0-9), possibly preceded by — or +.

102

pm_Checker:: spamassassinPattern Method
Validates the SpamAssassin pattern that specifies groups of addresses for white and black lists.

Syntax
public static function spamassassinPattern ($pattern)
Parameters
pattern

A string value that specifies the SpamAssassin pattern.
Returns
A boolean which is true if the pattern being checked is valid, false otherwise.
Remarks
In SpamAssassin, one can create patterns to specify groups of addresses to be filtered off as
spam, or always trusted (black and white lists). This can be done using two wildcards: “*’ (an
asterisk) to match any characters in an email address to check, and “?” (a question mark) to
match only one character. E.g. if one specifies a pattern like myclub?@somedomain.com, this
pattern will succeed for email addresses like myclubl@somedomain.com,
myclub2@somedomain.com, myclubX@somedomain.com , etc. If one specifies a pattern like

*_hotmai I .com, the pattern succeeds for any email address with the hotmai l .com
domain part.

Thus, a valid pattern can be formatted as <domain> or <emai I>@<domain>, where
<domain> is a series of labels glued with *.” (dot) characters, i.e.

<label>[.<label>[..]]- Each label can be up to 63 characters long, beginning with a
letter and composed of letters, digits (0-9) and ‘-’ (hyphen) characters. The allowed formats for
the domain part are ASCII and IDN.

Both email and domain parts of the email address can have a wildcard or more at any position,
or a wildcard can substitute <label>, <emai 1>, or the entire <domain>.

pm_Checker:: FTPMessage Method
Checks whether the specified FTP message is well-formatted.

Syntax
public static function FTPMessage ($msg)
Parameters
msg

A string value that specifies the message to check.
Returns

A boolean which is true if the passed in message is well-formatted, false otherwise.

103

Remarks

A well-formatted FTP message allows printable characters only.

class pm_cList

The pm_cList class presents a GUI element of the same name. This class is designed as the base
one - it shouldn’t be used as it is, but can serve as a parent from which user defined classes can
inherit.

The pm_cList class generates a ‘'list' GUI element displayed on the browser’s page as a table that
has a caption and several columns (according to the fields got by a query from the database),
each having its name.

The data currently displayed in the table is stored in a special multidimensional array (the
list_ member variable) whose format can be defined by the user as desired.

The table columns are rather complex entities described by a number of parameters. These
parameters also require a multidimensional array (the columns_ member variable) and,
among others, provide the following capabilities:

= |If acertain table column has a 'filter' parameter set for it, the list can be filtered by this
column. To set the filtering parameter, you should pass in some value to the instance of the
pm_cList class. As a result, the table will display only the rows that store this specified
value in the ‘filter' column.

= If a certain table column has a ‘sort” parameter set for it, the list can be sorted by this
column.

The class provides a variety of opportunities to customize the look of the HTML table (list
element). E.g. the table is normally set to output one-level data, though it can be customized to
output an item in a table row and a set of sub-items in sub-rows following the “parent” row.

Also, the pm_cList class provides an internal bitmask that can be used to store any state of the
HTML table or the state of any parameter.

To make the navigation through the multi-page list easier, every page displays the paging
control that looks nearly as follows:

First 1 2 34 5 Last

The look of this control is customizable: a special member variable (pagingSize_) holds the
number of pages to show in this control to the left and to the right of the current page.

The creation of an HTML page with a 'list' GUI control implies a definite set of invocations,
that is:

// instantiate class my clList
$myList = new my_cList;

// get filtering, sorting, and paging parameters from the global array
// of settings and set the matching class properties
$myList->setFSP();

// initialize the instance — get columns info, data to display, etc.
$myList->init();

// form HTML code of the page with the list (table)

104

$myListObj = $myList->get();

Initialization of an instance of class derived from pm_cList is not performed in init() in
full. The matter is that the structure of multi-dimensional arrays Iist_ and columns__ is not
fixed (the developers should resolve this structure in a derived class themselves). Since the
pm_cList class knows nothing about the structure of these arrays, it does not contain any code
that would initialize them. To fill the gap, you need to create a special member function in your
derived class that would form a query to the database and initialize member variables Iist__
and columns__ with data. This special function should have a name as follows:

fetch<derived class name> ()

(the name of the derived class should be used in the lower case, no parameters are required).

In case an error occurs when reading these parameters, the fetch<derived class_name>
function should set its error__ flag to true and assign a message text to its errorMsg_
variable using the setError () member function. Finally, this function can apply custom
sorting, filtering, and paging. If custom sorting has been applied, the sortApplayed
member variable should be set to true in order to prevent from original re-sorting.

Here is the list of constant values defined in class pm_cList:

Constant Value Description
DEFAULT_FLAGS 0 Integer. A bitmask used to
specify user defined flags.

DEFAULT SORT “name* String. The field by which the
- list is sorted.

DEFAULT FILTER " String. The value by which the
- list is filtered.

DEFAULT FILTER BY "name* String. The field by which the
- - list is filtered.

DEFAULT_FILTER_SHOW_COOK | "cListShowSearch | String. The name of the

1E " cookie file that stores the
state of the search elements
(a special input form and
buttons Search and Show
All). They can be displayed
(then the cookie file stores
'1") or hidden ('0").

DEFAULT_PAGE 0 Integer. The ordinal number
of the current list page set by
default.

DEFAULT_PAGE_SIZE 25 Integer. The number of lines

displayed on a single page.

105

Properties Access Description

list_ protected | Array. Is designed to hold the data displayed in the
list. Presents an array that can be formatted as
follows:
list_ = array(
<id>=>array(<data_nhame>=><data_val
ue> ’) ’
)
The meaning of collections associated with <id>
is user defined. E.g. <id> can stand for the
identifier of the list item (a row in the table),
<data_value> can mean the column name, and
<data_value> can be the value displayed in the
table at the intersection of <id>and
<data_name>.
The List_ array is created as an empty array by
default.

listHeader_ protected | String. Specifies the object of search that will be
displayed on the page as follows:
17 of 30 <objects> found
or
<objects> not found.

columns__ protected | Array. Holds a collection of sub-arrays, each

describing a column displayed in the list. The
format of the overloaded array can be defined as
desired. The current implementation looks as
follows:

columns_ = array(
<id> = array(“name’=><value>,

“sort’=><value>,
“reverse’=><value>, .),

)

106

parentList_id_ protected | Integer. The identifier of the owner of the listed
items (e.g. domain id for the list of email names,
etc.).

flags_default_ protected | Integer. The default value stored in the internal

bitmask. Is set to DEFAULT_FLAGS by default.

sort_default_ protected | String. Specifies the default field by which sorting
should by applied. Is set to DEFAULT_SORT by
default.

sortApplayed protected | Boolean. If set to true, indicates that sorting has

already been applied. Is used in the overloaded
fetch<derived_class_name> method to
prevent from “native’ sorting in case custom one
has been done. Is false by default.

filter_default_ protected | String. Specifies the default filtering parameter
(value). Is set to DEFAULT_FILTER by default.

filterBy_ protected | String. Specifies the field by which filtering
performs. Is set to DEFAULT_FILTER_BY by
default.

filterShowCookie protected | String. Specifies the name of the cookie file that

stores the state as whether the search elements (a
special input field, buttons Search and Show All)
are displayed or hidden on the page. The cookie
stores ‘1’ if the search elements are displayed, ‘0’
otherwise. The property is set to
DEFAULT_FILTER_SHOW_COOKIE by default.

pagingSize_ protected | Integer. Specifies the number of pages to be shown
in the paging control to the left and to the right of
the current page .E.g. If the list is 10 pages long,
the currently active page is 2, and pagingSize = 2,
then the paging control will look as follows:

First 1 2 3 4 Last

Is set to 2 by default.

error_ public Boolean. If this flag is set to true, an error has
occurred and can be reported. Is set to false by
default.

errorMsg_ public String. Holds an error message. Holds an empty

string by default.

107

removeTarget protected | String. Specifies the URI of the page (normally
reduced to the path in the context of the same site)
displayed after the Remove selected button is
pressed. Is set to the $SPHP_SELF global variable
by default (this variable stores the script being
currently executed).
_locales protected | Array. Is designed to hold the list of keys and
associated GUI messages. In the pm_cList class,
the default _locales array is defined as follows:
array (
“search_result’=>
“class_cList__search_result’,
“not_found” =>
“class_cList_not found’,
“header” => “class_clList__header”,
“empty’=> “class_clList__empty”
)
Methods Access Description
pm_cList() private Constructor. Initializes member variables.
init() public Initializes the instance of the pm_cList
class .

setFSP($cmd) public Retrieves the specified setting (filtering,
sorting, paging) from the global array of
parameters to the instance of class
pm_cList.

isSCMDSupported($cmd) public Checks whether the specified command is

registered in the class.

setError_($msq) public Resets the error reporting object by setting

the error_ flag to false and
errorMsg_ to an empty string.
setFilter($filter) public Sets the specified filtering parameter to
the instance of class pm_cList.
getFilter() public Returns the filtering parameter currently
stored in the instance of class
pm_cList.

108

clearFilter() public Resets the filtering parameter stored in the
instance of class pm_cList.

getFlag($bit_no) public Checks whether the specified bit in the
internal bitmask of pm_cList issetto
‘1,

setFlag($bit_no, $value) public Sets the bit in the internal pm_cList
bitmask to the specified value (*1” or ‘0°).

getFlags() public Returns the whole bitmask.

setFlags($value) public Sets the whole bitmask to the specified
value.

isCustomFilterSet() protected, Checks whether the filtering parameter is

overridable | set in the instance of class pm_cList.
isFilterSet() protected, Checks whether the filtering parameter is
overridable | set in the instance of the class the

isFilterSet method belongs to.

setSort($sort) public Sets the specified sorting parameter to the
instance of class pm_cList.

getSort() Returns the sorting parameter set in the
instance of class pm_cList.

setPageSize($page_size) public Recalculates the current page using the
new page size.

setPage($page) public Sets the specified page as current.

getPage() public Returns the current number of the page
that displays a portion of the whole list.

getPageSize() public Returns the current page size (in lines).

length() public Returns the current number of items in the
list.

lengthTotal() public Returns the number of items on all pages
of the non-filtered list.

lengthFilter() public Returns the number of items on all pages
of the filtered list.

lengthActive() public Returns the actual number of items on all
pages of the list.

lengthPage() public Returns the number of items on the

current page of the filtered list.

109

listName() public Returns the name of the list (which
normally matches the name of the class in
the lower case).
listBegin() public Returns the key of the first item in the list.
listNext() public Returns the key of the next item in the list.
id($id) public Returns the key of the specified item in
the list.
name($id) public Returns the value stored in the ‘name’
parameter of the specified list item.
get() public Forms HTML code of the page that will
be displayed in the browser.
fetchRemoveFunction() protected, Forms the javascript code of the function
overridable | which will be called to handle the Remove
Selected button pressure on the module’s
page.
fetchSearchFunction rotected, Forms the javascript code of several functions
Q gverridable which will be called to handle the pressure of
buttons Search, Show All, Hide Search, Show
Search located on the module’s page.
fetchSelectFunction($ch_name, protected, Forms the javascript code of the function
$misc_code) overridable | that will be called to handle the selection
of all checkboxes in the list.
fetchSelectOnChangeFunction() protected, Forms the javascript function which will
overridable | be called to handle change of state of the
checkbox referring to a certain list item.
fetchSortFunction() protected, Forms the javascript code of the function
overridable | sorting the list.
fetchPagingFunction() protected, Forms the javascript code of two functions
overridable | that handle transfer to a different page of
the list (a click on the paging control) and
recalculate the page size.
getButtonsL ayout() protected, Forms HTML code that defines the layout
overidable | and the collection of buttons that will be
displayed on the module’s page above the
list.
getSearch_() protected, Forms HTML code of buttons Search and
overridable | Show All displayed on the page right
above the list element.
getRemoveSelectedButton($enabl | protected, Forms HTML code that specifies the
ed) overridable | Remove Selected button.

110

notShowDel() public Disables the display of the Remove
Selected button on the page containing the
list.
getTable () protected, Forms HTML code of the table that
overridable | presents a list on the browser page.
getTableHeader () protected, Forms HTML code of the table header.
overridable
getLastColumnTitle($title, protected, Forms HTML code of the ‘select all’
$checkbox) overridable | checkbox element displayed in the table
header.
getTableBody () protected, Forms HTML code of the table body.
overridable
postTr($id) protected, Specifies HTML code forming a sub-row
overridable | below the specified row in the table.
getDel ($id, $disabled, $checked, | protected, Forms HTML code of a 'checkbox' GUI
$readonly) overridable | element anchored to the table row which
is specified by ID.
getPaging_() protected, Forms HTML code of 'paging' GUI
overridable | elements.
noPageApplayed() protected Sets the instance of class pm_cList to
state “paging applied”.
noFilterApplayed() protected Sets the instance of class pm_cList to

state “filtering applied”.

Include: pm.php.

pm_cList:: pm_cList Method

Constructor. Initializes member variables.

Syntax

function pm_cList ()
Parameters

No

Returns

Nothing.

Remarks

111

The removeTarget_ member variable is set to the value stored in the global $PHP_SELF
variable (the script being executed).

pm_cList:: init Method

Initializes the instance of the pm_cList class .
Syntax

function init

Parameters

No

Returns

A boolean which is true if all initialization stages have been passed successfully, false
otherwise.

pm_cList:: setFSP Method
Gets the specified setting (filtering, sorting, paging) from the global array of parameters.

Syntax

function setFSP ($cmd)
Parameters

cmd

A string value with a command that specifies the setting to be applied. Supported are the
following commands:
= ‘setFilter’ - tells the function to apply filtering settings;
= ‘clearFilter’ - tells the function to clear filtering settings;
= ‘setSort’ - tells the function to apply sorting settings;
= ‘setPage' - tells the function to set the current page;
= 'setPageSize' - tells the function to set the page size.

Returns

A boolean which is true if the specified setting has been applied successfully, false otherwise.
If one passes in false as a command, the function returns true.

Remarks

This function looks for the specified setting in the global array of parameters passed to a script
via GET, POST, or COOKIE HTML method:

= The “filter’ parameter is checked if the “setFilter’ command is specified;

= The ‘sort” parameter is checked if the ‘setSort’ command is specified;

= The ‘page’ parameter is checked if the ‘setPage’ command is specified;

112

= The ‘page_size’ parameter is checked if the ‘setPageSize’ command is specified.

In case the passed in command is not recognized, Plesk throws an error message.

One may need to define a custom command if the derived class is extended with new properties
that should be read from the global array of parameters. It is important that all new commands
are registered in the isCMDSupported method. Also, every command triggers a special
member function that reads the global parameter and puts the obtained value to the matching
class member variable. The code of the overloaded method can look as follows:

static function setFSP($cmd)
{

switch ($cmd){
case false:
return true;
case “<new_command>’:
return $this-
>set<new_param>(get_gpc(“<new_param>7));

6saerror(‘Command not found:~” .$cmd);

}
}

pm_cList:: isCMDSupported Method
Checks whether the specified command is registered in the class.

Syntax

function isCMDSupported ($cmd)
Parameters

cmd

A string value that specifies the command to be checked. Supported are the following
commands:
= ‘setFilter’ - means the setting of filtering settings;
= ‘clearFilter' - means the removal of filtering settings;
= ‘setSort' - means the settings of sorting settings;
= ‘setPage’ - means the setting of the current page;
= 'setPageSize'- means the setting of the page size.

Returns

A boolean which is true if the specified command is present in the list of known commands,
false otherwise.

Remarks

To extend the list of known commands, one can overload this method for the derived class as
follows:

function isCMDSupported($cmd)

{
arr$ = array(false, “setFilter’, “clearFliter’, “setSort’,
“setPage’, “setPagingSize’, <new_command>);

113

return in_array($cmd, $arr);

pm_cList:: setError_ Method

Sets an error message to the instance of class pm_cList.
Syntax
public function setError_($msg)
Parameters
msg

A string that contains the text of the error message.
Returns
Nothing.

pm_cList:: setFilter Method

Sets the specified filtering parameter to the 'list' GUI element and flushes the new setting to the
database.

Syntax
function setFilter ($filter)
Parameters
filter
A string that specifies the filtering parameter (value) to be set. Is NULL by default.
Returns
A boolean value that is true if the new filter has been set successfully, false otherwise.
Remarks

If the new filter is NULL (the filter parameter is not specified), then the default filtering
parameter (Filter_default_variable) is set for in 'list' GUI element.

pm_cList:: getFilter Method
Returns the filtering parameter currently set in the 'list' GUI element.

Syntax
function getFilter
Parameters

No

114

Returns

A string value with the filtering parameter currently stored in the instance of class pm_cList.

pm_cList:: clearFilter Method

Resets the filtering parameter (value) in the 'list' GUI element and writes the new setting to the
database.

Syntax

function clearFilter
Parameters

No

Returns

A boolean value. Always returns true after the filtering parameter is reset.

pm_cList:: getFlag Method

Checks whether the specified bit in the internal bitmask of the instance of class pm_cList is
setto ‘1’

Syntax
function getFlag ($bit_no)
Parameters
bit_no
An integer that specifies the ordinal number of the bit to check in the bitmask.
Returns

A boolean value that is true if the specified bit in the bitmask is set to ‘1’, false otherwise.

pm_cList:: setFlag Method

Sets the bit in the internal bitmask of the instance of class pm_cList to the specified value (
‘1’ or ‘0°).

Syntax

function setFlag ($bit_no, $value)
Parameters

bit_no

An integer that specifies the ordinal number of the bit to set in the bitmask. Only positive
values are allowed.

115

value

An integer that should be set to the specified bit of the bitmask. Allowed values are ‘0’ and
‘1.

Returns

A boolean value that is true if the bit_no parameter is not negative and the specified bit is set in
the bitmask, false otherwise.

pm_cList:: getFlags Method

Returns the whole bitmask of the instance of class pm_cList.
Syntax

function getFlags

Parameters

No

Returns

An integer value that presents a bitmask of the instance of class pm_cList.

pm_cList:: setFlags Method

Sets the whole bitmask of the instance of class pm_cList to the specified value.
Syntax
function setFlag ($value)
Parameters
value
An integer that should be written to the bitmask. Is NULL by default.
Returns

A boolean value that is true if the value parameter is an integer and the specified value is set to
the bitmask successfully, false otherwise.

Remarks

If the value parameter is NULL, the bitmask is set to the value currently stored in the
flags_default_ variable of the instance of class pm_cList.

pm_cList:; isCustomFilterSet Method

Checks whether the filtering parameter (value) of the calling instance of class pm_cList is set.

Syntax

116

function isCustomFilterSet ()
Parameters

No

Returns

A boolean value that is true if the filtering parameter of the instance of class pm_cList holds
a non-empty string, false otherwise.

Remarks

If overloaded in the derived class with its own ‘filter’ variable, this function is meant to read this
current ‘filter variable (referenced by $this). If one needs to read the parent filtering
parameter, this can be done by calling to the pm_cList::isFilterSet() function that reads the
filter' variable belonging to the same class the 1sSetFi I'ter method belongs to.

pm_cList:: isFilterSet Method

Checks whether the filtering value is set in the instance of class pm_cL i st to which the
isFilterSet method belongs to.

Syntax

function isFilterSet ()
Parameters

No

Returns

A boolean value that is true if the filtering value of the instance of class pm_cList is not an
empty string, false otherwise.

Remarks

This member function calls the pm_cList::isCustomFilterSet() method.

If overloaded in the derived class that has its own 'filter' variable, this function is meant to check
both the parent and current ‘filter' variables, e.g. this can be done as follows:

return (self::isCustomSet() || parent::isFilterSet());

Thus, this function will return true if any of these ‘filter' variables is set.

pm_cList:: setSort Method

Sets the specified sorting parameter to the instance of class pm_cList.
Syntax
function setSort ($sort)

Parameters

117

sort

A string that specifies the sorting parameter (the name of any column stored in the
columns__array). The value passed in to the function via the sort parameter can also specify
the sorting order — if it has the *_reverse’ suffix appended to the name of the column, this
means the reverse sorting order. E.g. ‘name’” means direct sorting order, ‘name_reverse’ means
the reverse order (the column stored in the columns__ array will have the ‘name’ parameter,
the suffix is never stored). Is NULL by default.

Returns

A boolean value. Always returns true after the sorting parameter is put to the instance of class
pm_cList and the entire list of parameters is flushed to the database.

Remarks

If the sort parameter is not NULL, the function looks through the columns__ array, picks out
the columns for which sorting is allowed, and searches the specified sorting parameter among
the parameters of such columns. Once this parameter is found, it is put to the instance of class
pm_cListthe pm_cList: :sortApplayed_ flag is disabled, after which the entire list of
parameters of class pm_cList is flushed to the database.

In case the sorting parameter is not found in the columns__ array, or the sort input parameter is
NULL, the value currently stored in the pm_cList: :sort_default_ variable becomes a
sorting parameter. Then the pm_cList: :sortApplayed_ flag is disabled and all
parameters are written to the database.

pm_cList:: getSort Method

Returns the sorting parameter set in the instance of class pm_cList.
Syntax

function getSort ()

Parameters

No

Returns

A string value that holds the current sorting parameter stored in the instance of class
pm_cList.

pm_cList:: setPageSize Method

Recalculates the current page using the new page size, sets the new page size to the instance of
class pm_cList, and writes the updated setting to the database.

Syntax
function setPageSize ($page_size)

Parameters

118

page_size
An integer that specifies the new page size.
Returns

A boolean value. Is always set to true after the new page size is set and the updated settings are
flushed to the database.

Remarks

If the new page size is a negative value, the page size is set to DEFAULT_PAGE_SIZE.

pm_cList:: setPage Method
Sets the specified page as current and writes the updated setting to the database.

Syntax

function setPage ($page)
Parameters

page

An integer that specifies the number of the page to display currently. Is set to
DEFAULT_PAGE by default.

Returns

A boolean value. Is always set to true after the new page is set as current and the updated
settings are flushed to the database.

Remarks

If the new page number is a negative value, page number 0 is set as the current one.

pm_cList:: getPage Method
Returns the current number of the page used to display a portion of the whole list.

Syntax

function getPage
Parameters

No

Returns

A string value that holds the number of the page that displays a portion of the whole list.

pm_cList:: getPageSize Method

Returns the page size (in lines) currently set in teh instance of class pm_cList.

119

Syntax

function getPageSize ()
Parameters

No

Returns

An integer value that holds the current number of lines on the page that displays the portion of
the list.

pm_cList:: length Method
Returns the current number of items in the list.

Syntax

function length ()
Parameters

No

Returns

An integer value that holds the number of items currently present in the pm_cList::list_
associative array.

pm_cList:: lengthTotal Method
Returns the number of items on all pages of the non-filtered list.

Syntax

function lengthTotal ()
Parameters

No

Returns

An integer value that holds the number of items on all pages of the non-filtered list.

pm_cList:: lengthFilter Method
Returns the number of items on all pages of the filtered list.

Syntax
function lengthFilter
Parameters

No

120

Returns

An integer value that holds the number of items on all pages of the filtered list.

pm_cList:: lengthActive Method
Returns the actual number of items on all pages of the list.

Syntax

function lengthActive ()
Parameters

No

Returns

An integer value that holds the actual number of items displayed on all pages of the list.

pm_cList:: lengthPage Method
Returns the number of items displayed on the current page of the filtered list.

Syntax

function lengthPage ()
Parameters

No

Returns

An integer value that holds the number of items displayed on the current page of the filtered
list.

pm_cList:: listName Method
Returns the name assigned to the list programmatically.

Syntax

function listName ()
Parameters

No

Returns

A string value with the list name read from the instance of class pm_cList. Normally, the
list name matches the name of the relevant class in the lower case.

pm_cList:: listBegin Method
Returns the key of the first item in the list.

121

Syntax

function listBegin ()
Parameters

No

Returns

A mixed value. If the pm_cList: - list_ array isempty, returns false. Otherwise returns
the key of the first element in the array.

Remarks

The function positions the internal pointer of the pm_cList::l1ist_ associative array to its
first element and returns its key.

pm_cList:: listNext Method
Returns the key of the next item in the list.

Syntax

function listNext
Parameters

No

Returns

A mixed value. If the pm_cList: :list_ array isempty or the element in focus is the last
one in the array, returns false. Otherwise returns the key of the next element in the array.

pm_cList:: id Method
Returns the key of the specified item in the list.

Syntax
function id ($id)

Parameters
id

An mixed value that specifies the item in the pm_cList::list_ array by its <id> value
(list_ = array(<id> = array(<name>=><value>, .), ..).Issetto0 by
default.
Returns

A mixed value that holds the key of the specified item in the pm_cList::list_ associative
array.

122

Remarks

If the item is not specified (the id input parameter is set to 0), the function returns the key of the
current item in the list.

If the specified key is not found in the array, the function returns 0.

pm_cList:: name Method
Returns the value stored in the ‘name’ parameter of the specified list item.

Syntax

function name ($id)

Parameters
id

A mixed value that specifies the item in the pm_cList: : list_ array by its <id> value
(list_ = array(<id> = array(<name>=><value>, .), ..).Issetto0 by
default.
Returns

A mixed value that can hold either the key of the current item in the list (if the item is not
specified, i.e. the id input parameter is set to 0), or the value stored in the ‘name’ parameter of
the specified item in the pm_cList::list_ associative array (hist_ =
array(<id>=array(“name’=><value>.), ..)).

pm_cList:: get Method
Forms HTML code of the page to be displayed in the browser.

Syntax

function get

Parameters

No

Returns

A string value that holds HTML code of the page with all required GUI elements (buttons,
remove elements, etc.) to be displayed in the browser. If the HTML code failed to be formed
OK, an empty string is returned.

Remarks

If the columns__ array is not defined or empty, the function cannot be executed and Plesk
throws an error message.

123

If it is necessary to form extended HTML code covering the creation of custom GUI elements,
the get () member function handles this situation by calling to a javascript() member
function that is supposed to be in a class derived from pm_cList. After calling to the
Javascript() function, get() forms HTML code of a standard Plesk styled page
containing a list GUI element and a set of buttons.

To generate HTML of GUI elements normally present on the page, get() invokes the
following member functions:

e etButtonsLayout()

e fetchPagingFunction()

e fetchSelectFunction()

e fetchSelectOnChangeFunction()

e fetchSortFunction()

e fetchSearchFunction()

e fetchRemoveFunction()

pm_cList:: fetchRemoveFunction Method

Forms the javascript code of the function called to handle the Remove Selected button pressure
on the module’s page.

Syntax

function fetchRemoveFunction ()
Parameters

No

Returns

A string value that presents a code snippet in javascript. The snippet contains the text of the
function that loads the removeTarget_ page after the Remove Selected button is pressed.

Remarks

This function is called from within the pm_cL.ist::get() member function that forms HTML of
the module’s page. The javascript code obtained after calling to fetchRemoveFunction()
is inserted into the resulting HTML. If overloaded, fetchRemoveFunction() allows the
user to implement a different or extended delete operation for selected list items.

pm_cList:: fetchSearchFunction Method

Forms the javascript code of several functions called to handle the pressure of buttons Search,
Show All, Hide Search, Show Search located on the module’s page.

Syntax

function fetchSearchFunction ()

124

Parameters
No
Returns

A string value that presents a portion of code in javascript containing several functions that
handle the pressure of the following buttons: Search, Show All, Hide Search, Show Search.

Remarks

This function is called from within the pm_cList::get() member function that forms HTML of
the module’s page. The javascript code obtained after calling to fetchSearchFunction()
is inserted into the resulting HTML. If overloaded, FetchSearchFunction() allows the
user to implement different or extended handlers of pressing buttons Search, Show All, Hide
Search, Show Search, or to add handlers for custom buttons related with search operations.

pm_cList:: fetchSelectFunction Method

Forms the javascript code of the function called to handle the selection of all checkboxes in the
list.

Syntax

function fetchSelectFunction ($ch_name, $misc_code)
Parameters

ch_name

A string value that specifies the name of the checkbox element located in the table header. Is
setto ‘del[]’ by default.

misc_code

A string value that can hold user defined code that will be appended to the code of the
generated function right after the selection code. Holds an empty string by default.

Returns

A string value that contains the code of the function called to handle the change of state of the
checkbox located in the table header.

Remarks

This function is called from within the pm_cList::get() member function that forms HTML code
of the module’s page. The javascript code obtained after calling to
fetchSelectFunction() is inserted into the resulting HTML. If overloaded,
fetchSelectFunction() allows the user to implement a different or extended handler of
selecting all items in the list.

pm_cList:: fetchSelectOnChangeFunction Method

Forms the javascript function to handle change of state of a checkbox referring to a certain list
item.

125

Syntax

function fetchSelectOnChangeFunction ()
Parameters

No

Returns

A string value that holds the code of the handler function to be called after a certain checkbox
has changed its state (the matching list item has been selected/released).

Remarks
This function is called from within the_pm_cL.ist::fetchSelectFunction() member function right

after the code that changes the state of the specified checkbox and prior to the user defined code
set by the misc_code parameter of pm_cList: : fetchSelectFunction.

The pm_cList: : fetchSelectOnChangeFunction method is the base one — the
function specified within this method contains the only line of code that just returns true. To
overload this member function without changing the calling one
(FetchSelectFunction()), do it as follows:

// the body of the overloaded fetchSelectOnChangeFunction()
return *
function “ . get class($this) . *SelectOnChange(o)

// define custom operations here
return true;

}

pm_cList:: fetchSortFunction Method
Forms the javascript code of the function sorting the list by the column.

Syntax

function fetchSortFunction ()
Parameters

No

Returns

A string value containing the code of the function that determines the list column by which to
sort and applies sorting to it.

Remarks

This function is called from within the pm_cList::get() member function that forms HTML code
of the module’s page. The javascript code obtained after calling to fetchSortFunction()
is inserted into the resulting HTML.

pm_cList:: fetchPagingFunction Method

126

Forms the javascript code of two functions that handle transfer to a different page of the list (a
click on the paging control) and recalculate the page size.

Syntax

function fetchPagingFunction ()

Parameters

No

Returns

A string value that contains two functions, one used to handle transfer to a different page of the
gst'g,nc;;\;d another meant to recalculate the page size (the number of lines to display on the page at

pm_cList:: getButtonsLayout Method

Forms HTML code that defines the layout and set of buttons that will be displayed on the page
of the module above the list.

Syntax

function getButtonsLayout ()
Parameters

No

Returns

A string value that contains HTML code that defines the layout and set of buttons that will be
displayed on the module’s page above the list.

pm_cList:: getSearch_ Method

Forms the HTML code of buttons Search and Show All displayed on the page right above the list
element.

Syntax

function getSearch_ O
Parameters

No

Returns

A string value that contains the HTML code snippet defining buttons Search and Show All.

pm_cList:: getRemoveSelectedButton Method
Forms HTML code that specifies the Remove Selected button.

Syntax

127

function getRemoveSelectedButton ($enabled)
Parameters
enabled

A boolean value that should be set to true to allow the display of the Remove Selected
button on the page, otherwise it should be false. Is true by default.

Returns

A string value that holds HTML code of the Remove Selected button.

pm_cList:: notShowDel Method

Disables the display of the Remove Selected button on the page containing the list.
Syntax

function notShowbDel ()

Parameters

No

Returns

Nothing.

pm_cList:: getTable_ Method
Forms HTML code of the table that presents a list on the browser page.

Syntax

function getTable (O

Parameters

No

Returns

A string value that holds HTML code of the table that presents the list GUI element.
Remarks

The function defines HTML tags <table> and </table> and the code lying within. This
code includes table parameters, the code of the table header obtained by calling to the

getTableHeader () member function, and the code of the table body generated by the
getTableBody () member function.

pm_cList:: getTableHeader_Method
Forms HTML code of the table header.

Syntax

128

function getTableHeader_ ()

Parameters

No

Returns

A string value that holds HTML code of the table header.

Remarks

To form the table header, the function defines HTML tags <tr> and </tr> and the code lying
within. This code can include adding the ‘select all’ checkbox element, after which every
column is assigned a set of parameters (size, column-generating function name, sorting, sorting

icons, context help).

This member function is invoked in the pm_cList::getTable () method.

pm_cList:: getLastColumnTitle Method
Forms HTML code of the ‘select all’ checkbox element displayed in the table header.

Syntax

function getLastColumnTitle ($title, $checkbox)
Parameters

title

A string value that can specify the HTML attribute describing the column title. Holds an
empty string by default.

checkbox

A boolean value. If set to true, indicates that HTML code of the ‘select all’ checkbox
element should be generated. If set to false, a cell with a zero width is generated. Is set to true
by default.
Returns
A string value that holds HTML code of the “select all” checkbox element.

Remarks

The function is invoked from within the pm_cList::getTableHeader () method.

pm_cList:: getTableBody_ Method
Forms HTML code of the table body.

Syntax

function getTableBody (O

129

Parameters

No

Returns

A string value that holds HTML code of the table body.

Remarks

The function generates HTML code of the table body, specifying parameters (a checkbox
element inserted, sorting) for each table row. After a row is defined, the function invokes the
postTr() member function to define a sub-row or several (e.g. to display a list of subdomains

below the domain).

The function is invoked from within pm_cList::getTable ().

pm_cList:: postTr Method
Specifies HTML code forming a sub-row below the specified row in the table.

Syntax

function postTr ($id)
Parameters

id

An integer value. Specifies the table row that requires a sub-row to be displayed lower.
Holds an empty string by default.

Returns

A string value that holds the HTML code of a sub-row. Returns an empty string in the current
implementation.

Remarks

This function is called from within the pm_cList::getTableBody () member function after the
HTML code of a next table row is generated.

This function is reserved for overriding in derived classes. Currently, it returns an empty string.
Potentially, it can generate HTML code of a sub-row that will be inserted into HTML of the
table after every <tr>..</tr> block.

pm_cList:: getDel _Method
Forms HTML code of the ‘checkbox' GUI element anchored to the specified table row.

Syntax
function getDel _ ($id, $disabled, $checked, $readonly)

Parameters

130

An integer value that specifies the table row.
disabled

A boolean value. If set to true, specifies the disabled checkbox. Is set to false by default.
checked

A boolean value that specifies the state of the checkbox. If set to true, means the checked
checkbox. Is false by default.

readonly

A boolean value. If set to true, the state of the checkbox cannot be changed. Is set to false by
default.

Returns

A string value that holds HTML code of the 'checkbox' GUI element displayed in a table row
specified by its identifier.

pm_cList:: getPaging_ Method
Forms HTML code of GUI elements referring to paging.

Syntax

function getPaging_ O

Parameters

No

Returns

A string value that holds HTML code of 'paging’ GUI elements.

Remarks

The function defines the output of the list info (how many items are found, etc.), of line
“Number of entries per page: 10 25 100, and of the paging control (First 2 3 4 5 Next) if
paging is allowed.

pm_cList:: noPageApplayed Method

Sets the instance of class pm_cL i st to state “paging applied”.
Syntax

function noPageApplayed ()

Parameters

No

131

Returns
Nothing.

pm_cList:: noFilterApplayed Method

Sets the instance of class pm_cL st to state “filtering applied”.
Syntax

function noFilterApplayed

Parameters

No

Returns

Nothing.

class pm_Form

The pm_Form class is designed as a creator of the HTML form. This is an abstract 'parent' class
from which user defined classes can inherit.

The creation of the HTML form implemented by this class is based on the FastTemplate
technology - the pm_Form class supports the rFastTemplate PHP extension (implemented in
class.rFastTemplate . php) that serves for creating HTML pages using templates,
including dynamic ones. The pm_Form class aggregates an instance of the rFastTemplate class,
and some functions of pm_Form serve to pass in the data to this instance.

In brief, the FastTemplate technology operates the following elements. An instance of the
rFastTemplate class has three main arrays:

= TEMPLATE - stores arrays, one for each template file containing variables (like {TITLE},
{NAME}, etc.). Each array has a name by which the template file will be referenced, and a
set of parameters, among which the base one is the name of the template file.

= VAR - stores pairs (variable, value). Each variable present in the template file(s) should be
resolved in this array.

= HANDLE - stores a handle or several, each referencing the text of a certain template file
with its variables substituted by text.

The main steps of the FastTemplate technology are:

= define — the TEMPLATE array is filled with filenames mapped to names by which
templates will be referred.

= assign - the VAR array is filled with pairs (variable, value).

= parse — the specified template file is parsed, its variables are interpolated to text taken from
the VAR array, and the HANDLE array is extended with a handle internally referencing the
resulting text.

= FastPrint: prints out the contents of the specified handle from the HANDLE array.

132

The rFastTemplate technology ‘recognizes’ dynamic templates which are not separate files but
special dynamic blocks nested within ‘parent’ template files. These dynamic template blocks are
added to the TEMPLATE array by define_dynamic operation and are stored in it with a special
*dynamic’ mark.

The details on the implementation and use of the FastTemplate technology can be found at
www.thewebmasters.net or in other Internet resources. Also, section Creating Modules of this
documentation gives an example on how to create forms using the FastTemplate technology
(see topic Step 3. Designing GUI of the module in the Programming Guide).

Constant Value Description

TEMPLATES_DIR PRODUCT_ROOT. String. Specifies the directory
“/admin/plib/templa | from which template files are
tes/’ searched and loaded by

rFastTemplate.

TEXT_SIZE 25 Integer. Specifies the default
size of the input field.

REQ get_asterisk() String. The string returned by
the get_asterisk()
function specifies the “*’
character as the ‘required’
indication for the field.

ERROR_FIELD “class="error” ~’ String. Specifies the class that
should be used to draw an
error message field in the

form.
Properties Access Description
action protected | Boolean. Specifies what will be set to the
ACTION variable of the form template. Is false
by default.
_show_warnings protected | Boolean. If set to true, allows the display of

warnings and error messages in a special area
of the form. Is true by default.

_show_events protected | Boolean. If setto true, indicates that the
current form can handle a javascript event,
false otherwise. Is true by default.

Methods Access Description
pm_Form() public Constructor. Initializes member

variables.

http://www.thewebmasters.net/

133

addTemplates ($templates) protected Adds an array of templates (pairs like
{name, filename}) to the instance of class
pm_Form.
define() public, Pushes all templates stored in the
overridable | instance of class pm_Form to the
TEMPLATE array of the internal
rFastTemplate instance.
define_dynamic($Macro, protected Adds the name of the dynamic template
$Parent) block (nested within the parent template
file) to the TEMPLATE array of the
internal rFastTemplate instance.
addVars($vars) protected Adds an array of variables (pairs like
{variable, value}) to the instance of class
pm_Form.
addHideableControls($control) | protected Generates HTML of all GUI controls of
the form and adds this HTML code to the
instance of class pm_Form.
addHideableControl($control, | protected Forms HTML of the area containing the
$var, $category, $available) specified control and adds this HTML to
the instance of class pm_Form.
getRefreshButton($conhelp, protected, Forms HTML code of the Refresh link
$href) overridable | button.
getPreviousButton() protected, Forms HTML of the link button
overridable | referencing the previous page of the
wizard.
getUpdateButton($conhelp, protected, Forms HTML code of the OK or Finish
$onclick) overridable | button.
getCancelButton($conhelp, protected, Forms HTML code of the Cancel button.
$href) overridable
assign() public, Fills the VAR array of the internal
overridable | rFastTemplate instance with data.
parse($name, $tmpl) public, Triggers the parse operation in the
overridable | internal rFastTemplate instance.
clear_dynamic($tmpl) protected Removes the specified dynamic block
definition from the parent template.
clear($handle) protected Clears all or specified internal references

(handles) stored in the HANDLE array of
the rFastTemplate instance.

134

fetch() public Returns the text referenced by the
‘DOCUMENT’ handle of the HANDLE
array of the rFastTemplate instance.

FastPrint() public Prints out the text referenced by the
‘DOCUMENT’ handle of the HANDLE
array of the internal rFastTemplate
instance.

Include: pm.php.

pm_Form:: pm_Form Method
Constructor. Initializes member variables.

Syntax

public function pm_Form ()

Parameters

No

Returns

Nothing.

Remarks

The function sets the action member variable to the value of the $PHP_SELF global variable

(the current script), instantiates the internal object of type rFastTemplate and sets its template
directory to TEMPLATES_DIR.

pm_Form:: addTemplates Method

Adds an array of templates (pairs like {name, filename}) to the instance of class pm_Form.
Syntax

protected function addTemplates ($templates)

Parameters

templates

An array of templates that should be added to the instance of class pm_Form and then
pushed to the internal rFastTemplate instance using the define() method.

Returns

A boolean which is true if the passed in array of templates has been added successfully, false
otherwise.

Remarks

135

The function fails if the passed in parameter is not an array. In this case the function throws a
special error and returns false.

The array of templates passed in via the templates parameter should be formatted as
array(<template name> => <template_file_name>, .),e.0.
array(“tickets” => “tickets.tpl’, “customers’ =>

“all_customers.tpl~). The template file should be located in the directory declared in
the TEMPLATES_DIR constant.

pm_Form:: define Method

Pushes all templates stored in the instance of class pm_Form to the TEMPLATE array of the
internal rFastTemplate instance.

Syntax

public function define ()

Parameters

No

Returns

A boolean which is true if the pm_Form instance stores at least one template.
Remarks

This function needs to be overridden.

pm_Form:: define_dynamic Method

Adds the name of the dynamic template block nested within the parent template file to the
TEMPLATE array of the internal rFastTemplate instance.

Syntax

protected function define_dynamic ($Macro, $Parent)
Parameters

Macro

A string that specifies the name of the dynamic template block nested within the template
file.

Parent

A string that specifies the “parent” — the template name stored in the TEMPLATE array of
the internal rFastTemplate instance and referencing the name of the template file within which
the dynamic block is nested. Holds an empty string by default.

Returns

A boolean which is always true.

136

pm_Form:: addVars Method

Adds an array of variables (pairs like {variable, value}) to the instance of class pm_Form.
Syntax
protected function addVars ($vars)
Parameters
vars
An array of variables that should be added to the instance of class pm_Form.
Returns

A boolean which is true if the passed in array of variables has been merged with
pm_Form: zvars successfully, false otherwise.

Remarks

The function fails if the passed in parameter is not an array. In this case the function throws a
special error and returns false.

The array of variables passed in via the vars parameter should be formatted as
array(<variable> => <value>, .),eg.array(“TITLE” =>
>Administering FTP”, “USER” => “Admin”). The array of variables stored in the
instance of class pm_Form should resolve all variables present in the template files added to
array of templates of this pm_Form instance.

pm_Form:: addHideableControls Method

Generates HTML of all GUI controls of the form and adds this HTML code to the instance of
class pm_Form.

Syntax

protected function addHideableControls ($control)
Parameters

control

A mixed value that can hold an array of control names or a string with a single control
name.

Returns

A boolean which is true if all resulting arrays of variables have been added successfully, false
otherwise.

Remarks

The function invokes the pm Form::addHideableControl() member function for each item of
the passed in collection of controls (or for a single one).

137

pm_Form:: addHideableControl Method

Forms HTML of the area containing the specified control and adds this HTML code to the
instance of class pm_Form.

Syntax

protected function addHideableControl ($control, $var, $category,
$available)

Parameters
control

A string that specifies the name of the control.
var

A mixed value that is expected to contain the name of the control (string) in the upper case.
Is false by default. If not defined (equal to false), this parameter will be assigned the name of the
control automatically.
category

A string that specifies the type of the control. Is set to ‘formControl’ by default.

available

A boolean value. If set to true, indicates that the specified control is enabled. Is true by
default.

Returns

A boolean which is true if the generated HTML code has been added to the instance of class
pm_Form successfully, false otherwise.

Remarks

The function reads the visibility status of the specified control from the global scope. Depending
on the results, the function adds two pairs (variable, text) to the instance of class pm_Form. The
text contains HTML code of the visible/invisible area in which the control will be placed:

* pairs “BEGIN_VIS_$var’> => “<tboby style = “display::none”>" and
“END_VIS_$var’ => “</tbody>" will be added in case the visibility status of the
specified control is ‘hide’;

= “BEGIN_VIS_S$var” and “END_VIS_$var” associated with HTML of the area
(including the specified control) will be added in case the visibility status of the specified
control is ‘show’.

pm_Form:: getRefreshButton Method
Forms HTML code of the Refresh link button.

Syntax

138

protected function getRefreshButton ($conhelp, $href)
Parameters
conhelp

A string value that holds the context help that will be displayed when one points at the
Refresh button with a mouse. Holds an empty string by default.

href

A string value that holds the destination URI that will be loaded once the Refresh button is
clicked. Holds an empty string by default.

Returns
A string value that holds HTML of the Refresh link button.
Remarks

This function can be overridden.

pm_Form:: getPreviousButton Method
Forms HTML of the link button referencing the previous page of the wizard.

Syntax

protected function getPreviousButton ()
Parameters

No

Returns

A string that holds HTML of the link button referencing the previous page of the wizard or the
current page in case it is the last one (or the only one).

Remarks

This function can be overridden.

pm_Form:: getUpdateButton Method
Forms HTML code of the OK or Finish button.

Syntax
protected function getUpdateButton ($conhelp, $onclick)
Parameters

conhelp

139

A string value that holds the context help to be displayed when one points at the OK/Finish
button with a mouse. Holds an empty string by default.

onclick

A string value that holds the javascript code to execute when one clicks on the OK/Finish
button. Is setto “return update_oC(document.forms[0])” by default.

Returns

A string that holds HTML code of the OK/Finish button.

Remarks

The button name is Finish if it is the wizard page, else the button name is OK.
This function can be overridden.

pm_Form:: getCancelButton Method
Forms HTML code of the Cancel button.

Syntax

protected function getUpdateButton ($conhelp, $href)
Parameters

conhelp

A string value that holds the context help to be displayed when one points at the Cancel
button with a mouse. Holds an empty string by default.

href

A mixed value that holds the destination URI that will be loaded once the Cancel button is
clicked. Is NULL default.

Returns
A string that holds HTML code of the Cancel link button.
Remarks

This function can be overridden.

140

pm_Form:: assign Method
Fills the VAR array of the internal rFastTemplate instance with data.

Syntax

public function assign ()
Parameters

No

Returns

A boolean which is true if the array of variables stored in the instance of class pm_Form is not
empty and has been passed to the internal rFastTemplate instance successfully, false otherwise.

Remarks

This function needs to be overridden.

pm_Form:: parse Method
Triggers the parse operation in the internal rFastTemplate instance.

Syntax
public function parse ($name, $tmpl)
Parameters
name
A string value that holds the name of the handle (an item of the HANDLE array of the
internal rFastTemplate instance). The handle will reference the text of the specified template file
with all its variables substituted by values during parsing.
tmpl

A mixed value that can hold either a string, or an array of strings, each holding a template
name to search in the TEMPLATE array of the the internal rFastTemplate instance.

Returns

A boolean which is always true.

Remarks

The function invokes the parse() member function of the the internal rFastTemplate instance,
passing in two parameters: the name of the destination handle (the name input parameter) and
the name of the template file (or a collection) to parse (the tmpl input parameter).

Once this function returns, the HANDLE array of the the internal rFastTemplate instance gets a
single handle in case the tmpl input parameter is a string, or as many handles as the number of

items in the array of templates in case the tmpl input parameter is an array. Each handle
references the text of one template file.

141

This function can be overridden.

pm_Form:: clear_dynamic Method
Removes the specified dynamic block definition from the parent template.

Syntax

protected function clear_dynamic ($tmpl)
Parameters

tmpl

A mixed value that can be a string holding the name of the dynamic template block, or an
array of strings of this kind.

Returns

Nothing.

Remarks

The function strips all of the unparsed dynamic blocks named as specified in the tmpl input
parameter from the parent template. On the level of code, this means that all such blocks stored
in the TEMPLATE array of the rFastTemplate instance will have their ‘result’ parameters set to
empty strings.

This member function will take effect only if the parse operation has not been applied to the

parent template yet, as all BEGIN and END lines of dynamic blocks are removed from the
template during parsing, after which the dynamic block cannot be recognized.

pm_Form:: clear Method

Clears all or specified internal references (handles) stored in the HANDLE array of the
rFastTemplate instance.

Syntax
protected function clear ($handle)
Parameters
handle
A mixed value that can hold a string with the handle (an item of the HANDLE array of the
internal rFastTemplate instance) or an array of strings of this kind. A handle references the text
of a template file with all its variables substituted by matching values.
Returns

Nothing.

Remarks

142

If the handle input parameter is set to NULL, the whole HANDLE array of the internal
rFastTemplate instance is released.

pm_Form:: fetch Method

Returns the text referenced by the ‘DOCUMENT’ handle of the HANDLE array of the
rFastTemplate instance.

Syntax

public function fetch ()
Parameters

No

Returns

A string value that holds the text referenced by the ‘ DOCUMENT’ handle of the HANDLE
array of the rFastTemplate instance.

pm_Form:: FastPrint Method

Prints out the text referenced by the ‘DOCUMENT’ handle of the HANDLE array of the
internal rFastTemplate instance.

Syntax

public function FastPrint ()
Parameters

No

Returns

A boolean which is always true.

Remarks

Before displaying the text of the page, the function clears all event and warning messages if
their display is not suppressed in the _show_warnings and _show_events flags.

class pm_Pathbar

The pm_Pathbar class presents a GUI element of the same name. A pathbar is a GUI element
displayed on top of Plesk pages and looking like a path string. For instance, the pathbar for any
service on example.com can look as follows:

Domains > example.com >
The pathbar GUI element is designed to display the navigation history of the current page. The

current page itself is not displayed in the pathbar. The names of previous pages serve as
bookmarks, i.e. they can behave as links if one wants to proceed to the relevant page.

143

To describe the pathbar GUI element, the pm_Pathbar class has a special multi-dimensional
array. Its first element stores the session context — a string that specifies the section of the
navigation pane of Plesk Control panel from which the navigation is started (e.g. ‘clients’,
‘domains’, ‘server’, etc.). The first element of the array (the context) is always present.

Elements of the 'pathbar’ array indexed 1 and higher specify previous pages (the current page is
not stored in the 'pathbar' array). Each element of the 'pathbar’ array is an array of parameters
making up the description of the relevant page. The page names are displayed in the order they
arrive in the array. The 'pathbar' array gets a new item to its tail at drill-down to some new page
and gets truncated at drill-up to the previous page.

A page is specified in the 'pathbar’ array as follows:

$pathbar = array(
[0] => “<session_context>",
[1] => array(
“‘url” => “<page url>’,
// the key associated with the page caption to be
displayed:
“name” => “<localization_key>~,
// "action” parameter of the form:
“page’ => “<PHP_script_file name>’,
“previous_page’ => “<prev_page url>7,
“‘return_conhelp” => “<conhelp_localization_key>"
).
[2] => array(.),
[3]1 => array(.),

)
Thus, a page is described by five parameters: its URL, URL of the previous page, its title, its
‘action’ parameter, and its context help. A page is identified by two parameters - by its URL and

by a PHP script file set in its ACTION parameter. The remaining parameters serve as an
additional description.

Methods Access Description

pm_Pathbar() public Constructor. Initializes member variables.

Destructor() public Saves the current session parameters to
the global scope.

set($url, $name, $in_context, | public Rewrites the 'pathbar' array at drill-down

$return_conhelp, $page, or drill-up in the hierarchy of pages.

$top_page)

del($url, $page) public Truncates the 'pathbar’ array up to the

specified page at drill-up.

reset($context) public Clears the 'pathbar' array and sets the
specified context.

getLatestURL () public Returns the identifier of URL of the page
displayed previously.

144

setPage($page) public Sets the name of the PHP script file for
the page being displayed.

getStruct($page) public Returns the 'pathbar' array truncated right
before the specified page.

getHistory($page) public Forms HTML code of the pathbar GUI
element.

getButton($page) public Forms HTML code of the Up Level
button.

getSelfPath($page) public Returns a 'pathbar’ sub-array describing
the specified page.

getSelfURL ($page) public Returns URL of the specified page.

getUpL evelPath($page) public Returns a 'pathbar' sub-array describing
the page located one level higher in the
hierarchy than the specified page.

tUpLevel URL bli Returns URL of the page located one level

deiopLeve (Spage) public higher in the hierarchy than the specified
page.

getUpL evelPage($page) public Returns the name of the PHP script file

associated with the page located one level
higher in the hierarchy than the specified

page.

Include: pm.php.

145

pm_Pathbar::pm_Pathbar Method
Constructor. Initializes member variables.

Syntax

function pm_Pathbar ()
Parameters

No

Returns

Nothing.

Remarks

The function reads the current session parameters from the global scope.

pm_Pathbar::Destructor Method
Saves the current session parameters to the global scope.

Syntax

function Destructor()

Parameters

No

Returns

A boolean value that is always true after the session parameters are written to the global scope.
Remarks

The function should be called before destroying the instance of the pm_Pathbar class.

pm_Pathbar::set Method

Rewrites parameters of the pathbar GUI element at drill-down or drill-up in the hierarchy of
pages.

Syntax

function set($url, $name, $in_context, $return_conhelp, $page,
$top_page)

Parameters
url
A string value that holds URL of the page being displayed. Is set to NULL by default.

name

146

A string value that holds the localization key associated with the page title to be displayed.
The format of the key is ‘pb_<php_file_name_no_extension>’. Is set to NULL by
default.
in_context

A string value that holds the passed in context of the page. Is set to NULL by default (will
be read from the global scope).

return_conhelp

A string value that holds the context help localization key for the current page. The format
of the key is ‘to_<php_Ffile_name_no_extension>’. Is set to NULL by default.

page

A string value that holds the name of the PHP script file (without extension) set in the action
parameter of the page being displayed. Is set to NULL by default.

top_page

A string value that holds the top-level page to be displayed in the pathbar GUI element.
Should be specified at drill-down. Is set to NULL by default.

Returns

A boolean value which is always true after the pathbar parameters are set anew.

Remarks

The in_context parameter can be used if it is necessary to pass the required session context (a
string that specifies the section of the navigation pane of Plesk Control panel from which the
navigation is started, e.g. ‘clients’, ‘'domains’, etc.). If left equal to NULL, the in_context

parameter indicates than the session context should be read from the global scope.

The the collection of bookmarks stored in the 'pathbar' array is either added with a new item or
truncated, depending on the direction one moves through the hierarchy of pages.

pm_Pathbar::del Method
Truncates the 'pathbar' array up to the specified page at drill-up.

Syntax

function del($url, $page)
Parameters

url

A string value that specifies URL of the page that will be the top-level one in the pathbar. Is
NULL by default.

page

147

A string value that holds the PHP script (the file name) of the page to be the top-level one in
the pathbar. Is NULL by default.

Returns

A boolean value which is always true after the 'pathbar’ array is rewritten.

Remarks

The function rewrites its 'pathbar' array so that it becomes truncated up to the element specified

by the url and page input parameters. If these parameters are set to NULL, the function uses
parameters set for the currently active page.

pm_Pathbar::reset Method

Removes all elements from the 'pathbar' array and sets the specified context.
Syntax

function set ($context)

Parameters

context

A string value that holds the new session context to be put to ‘pathbar’ array after it is
cleaned out. Is false by default.

Returns
Nothing.
Remarks

The session context is a string that specifies the section of the navigation pane of Plesk Control
Panel from which the navigation is started (e.g. ‘clients’, ‘domains’, ‘server’, etc.).

If the context input parameter is false, the old context is set anew.

pm_Pathbar::getLatestURL Method
Returns the identifier of the URL of the page displayed previously.

Syntax

function getLatestURL()
Parameters

No

Returns

A mixed value that can hold false if ‘pathbar' array is empty, or a string that identifies URL of
the previous page.

148

Remarks
The page displayed previously is the last item of the 'pathbar’ array.

The returned string is formatted as ‘?previous_page=<encoded_url>’or
‘&previous_page=<encoded_url>’. Here <encoded_ur > stands for URL of the
previous page encoded the same way as data posted from a WWW form: all non-alphanumeric
characters except hyphens (-), underscores (_), and dots (.) are replaced with a percent (%) sign
followed by two hex digits, spaces are encoded as plus (+) signs.

pm_Pathbar::setPage Method
Sets the name of the PHP script file for the current page.

Syntax
function setPage ($page)
Parameters
page
A string value that holds the name of the PHP script file specifying the page.
Returns
Nothing.

pm_Pathbar::getStruct Method
Returns the copy of the 'pathbar’ array truncated right before the specified page.

Syntax

function getStruct ($page)
Parameters

page

A string value that holds the name of the PHP script file associated with the specified page.
Is set to NULL by default.

Returns

An array that holds the copy of the ‘pathbar’ array truncated right before the specified page (the
specified page is included).

Remarks

If the page input parameter is NULL, the returned array contains the structure of the pathbar
GUI element (‘pathbar' array) ending with the specified (or current) page.

pm_Pathbar::getHistory Method
Forms HTML code of the pathbar GUI element.

149

Syntax

function getHistory ($page)
Parameters

page

A string value that specifies the name of the PHP script file associated with the page to be
displayed. Is NULL by default.

Returns
A string value that holds HTML code of the pathbar GUI element.
Remarks

The page input parameter specifies the page that will be displayed in the browser, so it will not
be a part of the pathbar. If set to NULL, the page parameter specifies the currently active page.

pm_Pathbar::getButton Method
Forms HTML code of the Up Level button.

Syntax

function getButton ($page)
Parameters

page

A string value that holds the action parameter (PHP script file) of the page containing the Up
Level button. Is NULL by default.

Returns
A string value that holds HTML code of the Up Level button.
Remarks

If the page input parameter is set to NULL, the action parameter of the current page is used.

pm_Pathbar::getSelfPath Method
Returns a 'pathbar' sub-array describing the specified page.

Syntax
function getSelfPath ($page)

Parameters

page

150

A string value that holds the action parameter (the PHP script file) of the specified page. Is
set to NULL by default.

Returns
A mixed value that can hold the 'pathbar' sub-array being searched, or false if the specified page
is not found in the parent array or refers to the ‘root’ level of hierarchy (displayed in the

navigation pane of Plesk Control Panel).

pm_Pathbar::getSelfURL Method
Returns URL of the specified page.

Syntax

function getSelfURL ($page)
Parameters

page

A string value that holds the action parameter (the PHP script file) of the specified page. Is
set to NULL by default.

Returns

A string value that holds URL of the specified page.

Remarks

If the specified page refers to the ‘root’ level of hierarchy (displayed in the navigation pane of

Plesk Control Panel), the function returns URL from the global scope, or the /* string if failed
to find such.

pm_Pathbar::getUpLevelPath Method

Returns a 'pathbar' sub-array describing the page located one level higher in the hierarchy than
the specified page.

Syntax

function getUpLevelPath ($page)
Parameters

page

A string value that holds the action parameter (the PHP script file) of the specified page. Is
set to NULL by default.

Returns
A mixed value that can hold the 'pathbar' sub-array of the upper-level page in the hierarchy (as

compared to the specified one), or false if the searched page refers to the ‘root’ level of
hierarchy (displayed in the navigation pane of Plesk Control Panel).

151

pm_Pathbar::getUpLevelURL Method
Returns URL of the page located one level higher in the hierarchy than the specified page.

Syntax

function getUpLevelURL ($page)
Parameters

page

A string value that holds the action parameter (the PHP script file) of the specified page. Is
set to NULL by default.

Returns

A string value that holds URL of the page located one level higher in the hierarchy than the
specified page.

Remarks
If the target page refers to the ‘root’ level of hierarchy (displayed in the navigation pane of

Plesk Control Panel), the function returns URL from the global scope, or the */° string if failed
to find such.

pm_Pathbar::getUpLevelPage Method

Returns the name of the PHP script file associated with the page located one level higher in the
hierarchy than the specified page.

Syntax

function getUpLevelPage ($page)
Parameters

page

A string value that holds the action parameter (the PHP script file) of the specified page. Is
set to NULL by default.

Returns

A string value that holds the PHP script file name associated with the page located one level
higher than the specified one.

Remarks

If the target page refers to the ‘root’ level of hierarchy (displayed in the navigation pane of
Plesk Control Panel), the function returns an empty string.

	Preface
	Documentation Conventions
	Typographical Conventions
	Feedback

	Plesk Modules
	Basics
	Overview
	How a Module Builds into Plesk Architecture
	Plesk Module Structure
	Recognizing a Module in Plesk Folder System
	admin/bin Folder
	admin/htdocs Folder
	admin/plib Folder
	admin/sbin Folder
	admin/conf Folder

	Plesk Modules Support Architecture
	Plesk Module Manager
	Localization Support
	Help Support

	 Creating Modules
	What Code Makes Up a Module
	 Programming Guide
	Step 1. Making up the hierarchy of folders
	Step 2. Adding the core functionality
	Step 3. Designing GUI of the module
	Step 4. Designing icons
	Step 5. Implementing Help System of the module
	Step 6. Creating backend of the module
	Step 7. Localizing the module
	Step 8. Customizing system settings for the module
	Step 9. Creating install/uninstall scripts
	Step 10. Creating the Distribution Package
	Creating an RPM package
	Creating a SH package
	Creating a DEB package

	API Reference
	Modules API Functions
	pm_alert
	pm_comm_button
	pm_get_gpc
	pm_get_locale
	pm_go_to
	pm_go_to_uplevel
	pm_isset_gpc
	pm_ldate
	pm_ldatetime
	pm_link_button
	pm_lmsg
	pm_ltime
	pm_plesk_mail
	pm_psaerror
	pm_safetyhtml
	pm_set_gpc
	pm_size_b_printing
	pm_size_kb_printing
	pm_size_mb_printing
	pm_size_pretty_printing
	pm_time_pretty_printing
	pm_topnote
	pm_util_exec
	pm_util_io_exec
	pm_warning
	pm_pathbarMaker
	pm_pathbarDestructor

	Modules API Classes
	class pm_Checker
	pm_Checker:: login Method
	pm_Checker:: sys_login Method
	pm_Checker:: sys_passwd Method
	pm_Checker:: ftp_login Method
	pm_Checker:: ftp_passwd Method
	pm_Checker:: pg_login Method
	pm_Checker:: pg_passwd Method
	pm_Checker:: mailname Method
	pm_Checker:: mail_passwd Method
	pm_Checker:: resp_name Method
	pm_Checker:: domain Method
	pm_Checker:: idn_rfc_domain Method
	pm_Checker:: rfc_domain Method
	pm_Checker:: cert_domain Method
	pm_Checker:: idn_domain Method
	pm_Checker:: atdomain Method
	pm_Checker:: subdomain Method
	pm_Checker:: idn_subdomain Method
	pm_Checker:: dns_dom Method
	pm_Checker:: dns_dom_t Method
	pm_Checker:: chk_ip_t Method
	pm_Checker:: url Method
	pm_Checker:: localUrl Method
	pm_Checker:: mailto Method
	pm_Checker:: shortUrl Method
	pm_Checker:: protectedDirName Method
	pm_Checker:: siteAppInstallPrefix Method
	pm_Checker:: realm Method
	pm_Checker:: dbName Method
	pm_Checker:: dbUserName Method
	pm_Checker:: personalName Method
	pm_Checker:: companyName Method
	pm_Checker:: phone Method
	pm_Checker:: fax Method
	pm_Checker:: email Method
	pm_Checker:: address Method
	pm_Checker:: city Method
	pm_Checker:: state Method
	pm_Checker:: zip Method
	pm_Checker:: country Method
	pm_Checker:: us_states Method
	pm_Checker:: ca_states Method
	pm_Checker:: ip Method
	pm_Checker:: ip_address_and_mask Method
	pm_Checker:: ip_interface Method
	pm_Checker:: ip_address Method
	pm_Checker:: cidr_addr Method
	pm_Checker:: mask Method
	pm_Checker:: netaddr Method
	pm_Checker:: filename Method
	pm_Checker:: filepath Method
	pm_Checker:: int Method
	pm_Checker:: spamassassinPattern Method
	pm_Checker:: FTPMessage Method

	class pm_cList
	pm_cList:: pm_cList Method
	pm_cList:: init Method
	pm_cList:: setFSP Method
	pm_cList:: isCMDSupported Method
	pm_cList:: setError_ Method
	pm_cList:: setFilter Method
	pm_cList:: getFilter Method
	pm_cList:: clearFilter Method
	pm_cList:: getFlag Method
	pm_cList:: setFlag Method
	pm_cList:: getFlags Method
	pm_cList:: setFlags Method
	pm_cList:: isCustomFilterSet Method
	pm_cList:: isFilterSet Method
	pm_cList:: setSort Method
	pm_cList:: getSort Method
	pm_cList:: setPageSize Method
	pm_cList:: setPage Method
	pm_cList:: getPage Method
	pm_cList:: getPageSize Method
	pm_cList:: length Method
	pm_cList:: lengthTotal Method
	pm_cList:: lengthFilter Method
	pm_cList:: lengthActive Method
	pm_cList:: lengthPage Method
	pm_cList:: listName Method
	pm_cList:: listBegin Method
	pm_cList:: listNext Method
	pm_cList:: id Method
	pm_cList:: name Method
	pm_cList:: get Method
	pm_cList:: fetchRemoveFunction Method
	pm_cList:: fetchSearchFunction Method
	pm_cList:: fetchSelectFunction Method
	pm_cList:: fetchSelectOnChangeFunction Method
	pm_cList:: fetchSortFunction Method
	pm_cList:: fetchPagingFunction Method
	pm_cList:: getButtonsLayout Method
	pm_cList:: getSearch_ Method
	pm_cList:: getRemoveSelectedButton Method
	pm_cList:: notShowDel Method
	pm_cList:: getTable_ Method
	pm_cList:: getTableHeader_ Method
	pm_cList:: getLastColumnTitle Method
	pm_cList:: getTableBody_ Method
	pm_cList:: postTr Method
	pm_cList:: getDel_ Method
	pm_cList:: getPaging_ Method
	pm_cList:: noPageApplayed Method
	pm_cList:: noFilterApplayed Method

	class pm_Form
	pm_Form:: pm_Form Method
	pm_Form:: addTemplates Method
	pm_Form:: define Method
	pm_Form:: define_dynamic Method
	pm_Form:: addVars Method
	pm_Form:: addHideableControls Method
	pm_Form:: addHideableControl Method
	pm_Form:: getRefreshButton Method
	pm_Form:: getPreviousButton Method
	pm_Form:: getUpdateButton Method
	pm_Form:: getCancelButton Method
	pm_Form:: assign Method
	pm_Form:: parse Method
	pm_Form:: clear_dynamic Method
	pm_Form:: clear Method
	pm_Form:: fetch Method
	pm_Form:: FastPrint Method

	class pm_Pathbar
	pm_Pathbar::pm_Pathbar Method
	pm_Pathbar::Destructor Method
	pm_Pathbar::set Method
	pm_Pathbar::del Method
	pm_Pathbar::reset Method
	pm_Pathbar::getLatestURL Method
	pm_Pathbar::setPage Method
	pm_Pathbar::getStruct Method
	pm_Pathbar::getHistory Method
	pm_Pathbar::getButton Method
	pm_Pathbar::getSelfPath Method
	pm_Pathbar::getSelfURL Method
	pm_Pathbar::getUpLevelPath Method
	pm_Pathbar::getUpLevelURL Method
	pm_Pathbar::getUpLevelPage Method

