
4/13/10 12:49 PMLua 5.1 Reference Manual

Page 1 of 99http://www.lua.org/manual/5.1/manual.html

 Lua 5.1 Reference Manual
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes

Copyright © 2006-2008 Lua.org, PUC-Rio. Freely available under the terms of the Lua license.

contents · index · english · português · español

1 - Introduction
Lua is an extension programming language designed to support general procedural
programming with data description facilities. It also offers good support for object-oriented
programming, functional programming, and data-driven programming. Lua is intended to be
used as a powerful, light-weight scripting language for any program that needs one. Lua is
implemented as a library, written in clean C (that is, in the common subset of ANSI C and C++).

Being an extension language, Lua has no notion of a "main" program: it only works embedded
in a host client, called the embedding program or simply the host. This host program can invoke
functions to execute a piece of Lua code, can write and read Lua variables, and can register
C functions to be called by Lua code. Through the use of C functions, Lua can be augmented to
cope with a wide range of different domains, thus creating customized programming languages
sharing a syntactical framework. The Lua distribution includes a sample host program called
lua, which uses the Lua library to offer a complete, stand-alone Lua interpreter.

Lua is free software, and is provided as usual with no guarantees, as stated in its license. The
implementation described in this manual is available at Lua's official web site, www.lua.org.

Like any other reference manual, this document is dry in places. For a discussion of the
decisions behind the design of Lua, see the technical papers available at Lua's web site. For a
detailed introduction to programming in Lua, see Roberto's book, Programming in Lua (Second
Edition).

2 - The Language
This section describes the lexis, the syntax, and the semantics of Lua. In other words, this
section describes which tokens are valid, how they can be combined, and what their

http://www.lua.org/home.html
http://www.lua.org/license.html#5
http://www.lua.org/manual/5.1/index.html#contents
http://www.lua.org/manual/5.1/index.html#index
http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/pt/
http://www.lua.org/manual/5.1/es/

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 2 of 99http://www.lua.org/manual/5.1/manual.html

combinations mean.

The language constructs will be explained using the usual extended BNF notation, in which
{a} means 0 or more a's, and [a] means an optional a. Non-terminals are shown like non-
terminal, keywords are shown like kword, and other terminal symbols are shown like `=´. The
complete syntax of Lua can be found in §8 at the end of this manual.

2.1 - Lexical Conventions
Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not
beginning with a digit. This coincides with the definition of names in most languages. (The
definition of letter depends on the current locale: any character considered alphabetic by the
current locale can be used in an identifier.) Identifiers are used to name variables and table
fields.

The following keywords are reserved and cannot be used as names:

 and break do else elseif
 end false for function if
 in local nil not or
 repeat return then true until while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different,
valid names. As a convention, names starting with an underscore followed by uppercase letters
(such as _VERSION) are reserved for internal global variables used by Lua.

The following strings denote other tokens:

 + - * / % ^ #
 == ~= <= >= < > =
 () { } []
 ; : ,

Literal strings can be delimited by matching single or double quotes, and can contain the
following C-like escape sequences: '\a' (bell), '\b' (backspace), '\f' (form feed), '\n' (newline),
'\r' (carriage return), '\t' (horizontal tab), '\v' (vertical tab), '\\' (backslash), '\"' (quotation
mark [double quote]), and '\'' (apostrophe [single quote]). Moreover, a backslash followed by a
real newline results in a newline in the string. A character in a string can also be specified by its
numerical value using the escape sequence \ddd, where ddd is a sequence of up to three
decimal digits. (Note that if a numerical escape is to be followed by a digit, it must be expressed
using exactly three digits.) Strings in Lua can contain any 8-bit value, including embedded
zeros, which can be specified as '\0'.

Literal strings can also be defined using a long format enclosed by long brackets. We define an
opening long bracket of level n as an opening square bracket followed by n equal signs followed
by another opening square bracket. So, an opening long bracket of level 0 is written as [[, an
opening long bracket of level 1 is written as [=[, and so on. A closing long bracket is defined
similarly; for instance, a closing long bracket of level 4 is written as]====]. A long string starts

http://www.lua.org/manual/5.1/manual.html#8
http://www.lua.org/manual/5.1/manual.html#pdf-_VERSION

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 3 of 99http://www.lua.org/manual/5.1/manual.html

with an opening long bracket of any level and ends at the first closing long bracket of the same
level. Literals in this bracketed form can run for several lines, do not interpret any escape
sequences, and ignore long brackets of any other level. They can contain anything except a
closing bracket of the proper level.

For convenience, when the opening long bracket is immediately followed by a newline, the
newline is not included in the string. As an example, in a system using ASCII (in which 'a' is
coded as 97, newline is coded as 10, and '1' is coded as 49), the five literal strings below
denote the same string:

 a = 'alo\n123"'
 a = "alo\n123\""
 a = '\97lo\10\04923"'
 a = [[alo
 123"]]
 a = [==[
 alo
 123"]==]

A numerical constant can be written with an optional decimal part and an optional decimal
exponent. Lua also accepts integer hexadecimal constants, by prefixing them with 0x. Examples
of valid numerical constants are

 3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56

A comment starts with a double hyphen (--) anywhere outside a string. If the text immediately
after -- is not an opening long bracket, the comment is a short comment, which runs until the
end of the line. Otherwise, it is a long comment, which runs until the corresponding closing long
bracket. Long comments are frequently used to disable code temporarily.

2.2 - Values and Types
Lua is a dynamically typed language. This means that variables do not have types; only values
do. There are no type definitions in the language. All values carry their own type.

All values in Lua are first-class values. This means that all values can be stored in variables,
passed as arguments to other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, number, string, function, userdata, thread, and
table. Nil is the type of the value nil, whose main property is to be different from any other
value; it usually represents the absence of a useful value. Boolean is the type of the values
false and true. Both nil and false make a condition false; any other value makes it true.
Number represents real (double-precision floating-point) numbers. (It is easy to build Lua
interpreters that use other internal representations for numbers, such as single-precision float or
long integers; see file luaconf.h.) String represents arrays of characters. Lua is 8-bit clean:
strings can contain any 8-bit character, including embedded zeros ('\0') (see §2.1).

Lua can call (and manipulate) functions written in Lua and functions written in C (see §2.5.8).

http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.5.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 4 of 99http://www.lua.org/manual/5.1/manual.html

The type userdata is provided to allow arbitrary C data to be stored in Lua variables. This type
corresponds to a block of raw memory and has no pre-defined operations in Lua, except
assignment and identity test. However, by using metatables, the programmer can define
operations for userdata values (see §2.8). Userdata values cannot be created or modified in
Lua, only through the C API. This guarantees the integrity of data owned by the host program.

The type thread represents independent threads of execution and it is used to implement
coroutines (see §2.11). Do not confuse Lua threads with operating-system threads. Lua
supports coroutines on all systems, even those that do not support threads.

The type table implements associative arrays, that is, arrays that can be indexed not only with
numbers, but with any value (except nil). Tables can be heterogeneous; that is, they can
contain values of all types (except nil). Tables are the sole data structuring mechanism in Lua;
they can be used to represent ordinary arrays, symbol tables, sets, records, graphs, trees, etc.
To represent records, Lua uses the field name as an index. The language supports this
representation by providing a.name as syntactic sugar for a["name"]. There are several
convenient ways to create tables in Lua (see §2.5.7).

Like indices, the value of a table field can be of any type (except nil). In particular, because
functions are first-class values, table fields can contain functions. Thus tables can also carry
methods (see §2.5.9).

Tables, functions, threads, and (full) userdata values are objects: variables do not actually
contain these values, only references to them. Assignment, parameter passing, and function
returns always manipulate references to such values; these operations do not imply any kind of
copy.

The library function type returns a string describing the type of a given value.

2.2.1 - Coercion

Lua provides automatic conversion between string and number values at run time. Any
arithmetic operation applied to a string tries to convert this string to a number, following the
usual conversion rules. Conversely, whenever a number is used where a string is expected, the
number is converted to a string, in a reasonable format. For complete control over how numbers
are converted to strings, use the format function from the string library (see string.format).

2.3 - Variables
Variables are places that store values. There are three kinds of variables in Lua: global
variables, local variables, and table fields.

A single name can denote a global variable or a local variable (or a function's formal parameter,
which is a particular kind of local variable):

 var ::= Name

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.11
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#pdf-type
http://www.lua.org/manual/5.1/manual.html#pdf-string.format

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 5 of 99http://www.lua.org/manual/5.1/manual.html

Name denotes identifiers, as defined in §2.1.

Any variable is assumed to be global unless explicitly declared as a local (see §2.4.7). Local
variables are lexically scoped: local variables can be freely accessed by functions defined
inside their scope (see §2.6).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

 var ::= prefixexp `[´ exp `]´

The meaning of accesses to global variables and table fields can be changed via metatables.
An access to an indexed variable t[i] is equivalent to a call gettable_event(t,i). (See §2.8
for a complete description of the gettable_event function. This function is not defined or
callable in Lua. We use it here only for explanatory purposes.)

The syntax var.Name is just syntactic sugar for var["Name"]:

 var ::= prefixexp `.´ Name

All global variables live as fields in ordinary Lua tables, called environment tables or simply
environments (see §2.9). Each function has its own reference to an environment, so that all
global variables in this function will refer to this environment table. When a function is created, it
inherits the environment from the function that created it. To get the environment table of a Lua
function, you call getfenv. To replace it, you call setfenv. (You can only manipulate the
environment of C functions through the debug library; (see §5.9).)

An access to a global variable x is equivalent to _env.x, which in turn is equivalent to

 gettable_event(_env, "x")

where _env is the environment of the running function. (See §2.8 for a complete description of
the gettable_event function. This function is not defined or callable in Lua. Similarly, the _env
variable is not defined in Lua. We use them here only for explanatory purposes.)

2.4 - Statements
Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set
includes assignments, control structures, function calls, and variable declarations.

2.4.1 - Chunks

The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements,
which are executed sequentially. Each statement can be optionally followed by a semicolon:

 chunk ::= {stat [`;´]}

http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.4.7
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.9
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#5.9
http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 6 of 99http://www.lua.org/manual/5.1/manual.html

There are no empty statements and thus ';;' is not legal.

Lua handles a chunk as the body of an anonymous function with a variable number of
arguments (see §2.5.9). As such, chunks can define local variables, receive arguments, and
return values.

A chunk can be stored in a file or in a string inside the host program. To execute a chunk, Lua
first pre-compiles the chunk into instructions for a virtual machine, and then it executes the
compiled code with an interpreter for the virtual machine.

Chunks can also be pre-compiled into binary form; see program luac for details. Programs in
source and compiled forms are interchangeable; Lua automatically detects the file type and
acts accordingly.

2.4.2 - Blocks

A block is a list of statements; syntactically, a block is the same as a chunk:

 block ::= chunk

A block can be explicitly delimited to produce a single statement:

 stat ::= do block end

Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also
sometimes used to add a return or break statement in the middle of another block (see
§2.4.4).

2.4.3 - Assignment

Lua allows multiple assignments. Therefore, the syntax for assignment defines a list of variables
on the left side and a list of expressions on the right side. The elements in both lists are
separated by commas:

 stat ::= varlist `=´ explist
 varlist ::= var {`,´ var}
 explist ::= exp {`,´ exp}

Expressions are discussed in §2.5.

Before the assignment, the list of values is adjusted to the length of the list of variables. If there
are more values than needed, the excess values are thrown away. If there are fewer values
than needed, the list is extended with as many nil's as needed. If the list of expressions ends
with a function call, then all values returned by that call enter the list of values, before the
adjustment (except when the call is enclosed in parentheses; see §2.5).

The assignment statement first evaluates all its expressions and only then are the assignments
performed. Thus the code

http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 7 of 99http://www.lua.org/manual/5.1/manual.html

 i = 3
 i, a[i] = i+1, 20

sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is
assigned 4. Similarly, the line

 x, y = y, x

exchanges the values of x and y, and

 x, y, z = y, z, x

cyclically permutes the values of x, y, and z.

The meaning of assignments to global variables and table fields can be changed via
metatables. An assignment to an indexed variable t[i] = val is equivalent to
settable_event(t,i,val). (See §2.8 for a complete description of the settable_event function.
This function is not defined or callable in Lua. We use it here only for explanatory purposes.)

An assignment to a global variable x = val is equivalent to the assignment _env.x = val, which
in turn is equivalent to

 settable_event(_env, "x", val)

where _env is the environment of the running function. (The _env variable is not defined in Lua.
We use it here only for explanatory purposes.)

2.4.4 - Control Structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

 stat ::= while exp do block end
 stat ::= repeat block until exp
 stat ::= if exp then block {elseif exp then block} [else block] end

Lua also has a for statement, in two flavors (see §2.4.5).

The condition expression of a control structure can return any value. Both false and nil are
considered false. All values different from nil and false are considered true (in particular, the
number 0 and the empty string are also true).

In the repeat–until loop, the inner block does not end at the until keyword, but only after the
condition. So, the condition can refer to local variables declared inside the loop block.

The return statement is used to return values from a function or a chunk (which is just a
function). Functions and chunks can return more than one value, and so the syntax for the
return statement is

 stat ::= return [explist]

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.4.5

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 8 of 99http://www.lua.org/manual/5.1/manual.html

The break statement is used to terminate the execution of a while, repeat, or for loop, skipping
to the next statement after the loop:

 stat ::= break

A break ends the innermost enclosing loop.

The return and break statements can only be written as the last statement of a block. If it is
really necessary to return or break in the middle of a block, then an explicit inner block can be
used, as in the idioms do return end and do break end, because now return and break are
the last statements in their (inner) blocks.

2.4.5 - For Statement

The for statement has two forms: one numeric and one generic.

The numeric for loop repeats a block of code while a control variable runs through an arithmetic
progression. It has the following syntax:

 stat ::= for Name `=´ exp `,´ exp [`,´ exp] do block end

The block is repeated for name starting at the value of the first exp, until it passes the second
exp by steps of the third exp. More precisely, a for statement like

 for v = e1, e2, e3 do block end

is equivalent to the code:

 do
 local var, limit, step = tonumber(e1), tonumber(e2), tonumber(e3)
 if not (var and limit and step) then error() end
 while (step > 0 and var <= limit) or (step <= 0 and var >= limit) do
 local v = var
 block
 var = var + step
 end
 end

Note the following:

All three control expressions are evaluated only once, before the loop starts. They must
all result in numbers.
var, limit, and step are invisible variables. The names shown here are for explanatory
purposes only.
If the third expression (the step) is absent, then a step of 1 is used.
You can use break to exit a for loop.
The loop variable v is local to the loop; you cannot use its value after the for ends or is
broken. If you need this value, assign it to another variable before breaking or exiting the
loop.

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 9 of 99http://www.lua.org/manual/5.1/manual.html

The generic for statement works over functions, called iterators. On each iteration, the iterator
function is called to produce a new value, stopping when this new value is nil. The generic for
loop has the following syntax:

 stat ::= for namelist in explist do block end
 namelist ::= Name {`,´ Name}

A for statement like

 for var_1, ···, var_n in explist do block end

is equivalent to the code:

 do
 local f, s, var = explist
 while true do
 local var_1, ···, var_n = f(s, var)
 var = var_1
 if var == nil then break end
 block
 end
 end

Note the following:

explist is evaluated only once. Its results are an iterator function, a state, and an initial
value for the first iterator variable.
f, s, and var are invisible variables. The names are here for explanatory purposes only.
You can use break to exit a for loop.
The loop variables var_i are local to the loop; you cannot use their values after the for
ends. If you need these values, then assign them to other variables before breaking or
exiting the loop.

2.4.6 - Function Calls as Statements

To allow possible side-effects, function calls can be executed as statements:

 stat ::= functioncall

In this case, all returned values are thrown away. Function calls are explained in §2.5.8.

2.4.7 - Local Declarations

Local variables can be declared anywhere inside a block. The declaration can include an initial
assignment:

 stat ::= local namelist [`=´ explist]

If present, an initial assignment has the same semantics of a multiple assignment (see §2.4.3).
Otherwise, all variables are initialized with nil.

http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.4.3

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 10 of 99http://www.lua.org/manual/5.1/manual.html

A chunk is also a block (see §2.4.1), and so local variables can be declared in a chunk outside
any explicit block. The scope of such local variables extends until the end of the chunk.

The visibility rules for local variables are explained in §2.6.

2.5 - Expressions
The basic expressions in Lua are the following:

 exp ::= prefixexp
 exp ::= nil | false | true
 exp ::= Number
 exp ::= String
 exp ::= function
 exp ::= tableconstructor
 exp ::= `...´
 exp ::= exp binop exp
 exp ::= unop exp
 prefixexp ::= var | functioncall | `(´ exp `)´

Numbers and literal strings are explained in §2.1; variables are explained in §2.3; function
definitions are explained in §2.5.9; function calls are explained in §2.5.8; table constructors are
explained in §2.5.7. Vararg expressions, denoted by three dots ('...'), can only be used when
directly inside a vararg function; they are explained in §2.5.9.

Binary operators comprise arithmetic operators (see §2.5.1), relational operators (see §2.5.2),
logical operators (see §2.5.3), and the concatenation operator (see §2.5.4). Unary operators
comprise the unary minus (see §2.5.1), the unary not (see §2.5.3), and the unary length
operator (see §2.5.5).

Both function calls and vararg expressions can result in multiple values. If an expression is used
as a statement (only possible for function calls (see §2.4.6)), then its return list is adjusted to
zero elements, thus discarding all returned values. If an expression is used as the last (or the
only) element of a list of expressions, then no adjustment is made (unless the call is enclosed in
parentheses). In all other contexts, Lua adjusts the result list to one element, discarding all
values except the first one.

Here are some examples:

 f() -- adjusted to 0 results
 g(f(), x) -- f() is adjusted to 1 result
 g(x, f()) -- g gets x plus all results from f()
 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil)
 a,b = ... -- a gets the first vararg parameter, b gets
 -- the second (both a and b can get nil if there
 -- is no corresponding vararg parameter)

 a,b,c = x, f() -- f() is adjusted to 2 results
 a,b,c = f() -- f() is adjusted to 3 results

http://www.lua.org/manual/5.1/manual.html#2.4.1
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.2
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.4
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#2.4.6

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 11 of 99http://www.lua.org/manual/5.1/manual.html

 return f() -- returns all results from f()
 return ... -- returns all received vararg parameters
 return x,y,f() -- returns x, y, and all results from f()
 {f()} -- creates a list with all results from f()
 {...} -- creates a list with all vararg parameters
 {f(), nil} -- f() is adjusted to 1 result

Any expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is
always a single value, even if f returns several values. (The value of (f(x,y,z)) is the first
value returned by f or nil if f does not return any values.)

2.5.1 - Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), *
(multiplication), / (division), % (modulo), and ^ (exponentiation); and unary - (negation). If the
operands are numbers, or strings that can be converted to numbers (see §2.2.1), then all
operations have the usual meaning. Exponentiation works for any exponent. For instance, x^(-
0.5) computes the inverse of the square root of x. Modulo is defined as

 a % b == a - math.floor(a/b)*b

That is, it is the remainder of a division that rounds the quotient towards minus infinity.

2.5.2 - Relational Operators

The relational operators in Lua are

 == ~= < > <= >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result is
false. Otherwise, the values of the operands are compared. Numbers and strings are
compared in the usual way. Objects (tables, userdata, threads, and functions) are compared by
reference: two objects are considered equal only if they are the same object. Every time you
create a new object (a table, userdata, thread, or function), this new object is different from any
previously existing object.

You can change the way that Lua compares tables and userdata by using the "eq" metamethod
(see §2.8).

The conversion rules of §2.2.1 do not apply to equality comparisons. Thus, "0"==0 evaluates to
false, and t[0] and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared
as such. Otherwise, if both arguments are strings, then their values are compared according to
the current locale. Otherwise, Lua tries to call the "lt" or the "le" metamethod (see §2.8). A

http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 12 of 99http://www.lua.org/manual/5.1/manual.html

comparison a > b is translated to b < a and a >= b is translated to b <= a.

2.5.3 - Logical Operators

The logical operators in Lua are and, or, and not. Like the control structures (see §2.4.4), all
logical operators consider both false and nil as false and anything else as true.

The negation operator not always returns false or true. The conjunction operator and returns
its first argument if this value is false or nil; otherwise, and returns its second argument. The
disjunction operator or returns its first argument if this value is different from nil and false;
otherwise, or returns its second argument. Both and and or use short-cut evaluation; that is, the
second operand is evaluated only if necessary. Here are some examples:

 10 or 20 --> 10
 10 or error() --> 10
 nil or "a" --> "a"
 nil and 10 --> nil
 false and error() --> false
 false and nil --> false
 false or nil --> nil
 10 and 20 --> 20

(In this manual, --> indicates the result of the preceding expression.)

2.5.4 - Concatenation

The string concatenation operator in Lua is denoted by two dots ('..'). If both operands are
strings or numbers, then they are converted to strings according to the rules mentioned in
§2.2.1. Otherwise, the "concat" metamethod is called (see §2.8).

2.5.5 - The Length Operator

The length operator is denoted by the unary operator #. The length of a string is its number of
bytes (that is, the usual meaning of string length when each character is one byte).

The length of a table t is defined to be any integer index n such that t[n] is not nil and t[n+1] is
nil; moreover, if t[1] is nil, n can be zero. For a regular array, with non-nil values from 1 to a
given n, its length is exactly that n, the index of its last value. If the array has "holes" (that is, nil
values between other non-nil values), then #t can be any of the indices that directly precedes a
nil value (that is, it may consider any such nil value as the end of the array).

2.5.6 - Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

 or
 and
 < > <= >= ~= ==

http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 13 of 99http://www.lua.org/manual/5.1/manual.html

 ..
 + -
 * / %
 not # - (unary)
 ^

As usual, you can use parentheses to change the precedences of an expression. The
concatenation ('..') and exponentiation ('^') operators are right associative. All other binary
operators are left associative.

2.5.7 - Table Constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a
new table is created. A constructor can be used to create an empty table or to create a table
and initialize some of its fields. The general syntax for constructors is

 tableconstructor ::= `{´ [fieldlist] `}´
 fieldlist ::= field {fieldsep field} [fieldsep]
 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp
 fieldsep ::= `,´ | `;´

Each field of the form [exp1] = exp2 adds to the new table an entry with key exp1 and value
exp2. A field of the form name = exp is equivalent to ["name"] = exp. Finally, fields of the form
exp are equivalent to [i] = exp, where i are consecutive numerical integers, starting with 1.
Fields in the other formats do not affect this counting. For example,

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

is equivalent to

 do
 local t = {}
 t[f(1)] = g
 t[1] = "x" -- 1st exp
 t[2] = "y" -- 2nd exp
 t.x = 1 -- t["x"] = 1
 t[3] = f(x) -- 3rd exp
 t[30] = 23
 t[4] = 45 -- 4th exp
 a = t
 end

If the last field in the list has the form exp and the expression is a function call or a vararg
expression, then all values returned by this expression enter the list consecutively (see §2.5.8).
To avoid this, enclose the function call or the vararg expression in parentheses (see §2.5).

The field list can have an optional trailing separator, as a convenience for machine-generated
code.

2.5.8 - Function Calls

http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 14 of 99http://www.lua.org/manual/5.1/manual.html

A function call in Lua has the following syntax:

 functioncall ::= prefixexp args

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type
function, then this function is called with the given arguments. Otherwise, the prefixexp "call"
metamethod is called, having as first parameter the value of prefixexp, followed by the original
call arguments (see §2.8).

The form

 functioncall ::= prefixexp `:´ Name args

can be used to call "methods". A call v:name(args) is syntactic sugar for v.name(v,args),
except that v is evaluated only once.

Arguments have the following syntax:

 args ::= `(´ [explist] `)´
 args ::= tableconstructor
 args ::= String

All argument expressions are evaluated before the call. A call of the form f{fields} is syntactic
sugar for f({fields}); that is, the argument list is a single new table. A call of the form
f'string' (or f"string" or f[[string]]) is syntactic sugar for f('string'); that is, the
argument list is a single literal string.

As an exception to the free-format syntax of Lua, you cannot put a line break before the '(' in a
function call. This restriction avoids some ambiguities in the language. If you write

 a = f
 (g).x(a)

Lua would see that as a single statement, a = f(g).x(a). So, if you want two statements, you
must add a semi-colon between them. If you actually want to call f, you must remove the line
break before (g).

A call of the form return functioncall is called a tail call. Lua implements proper tail calls (or
proper tail recursion): in a tail call, the called function reuses the stack entry of the calling
function. Therefore, there is no limit on the number of nested tail calls that a program can
execute. However, a tail call erases any debug information about the calling function. Note that
a tail call only happens with a particular syntax, where the return has one single function call as
argument; this syntax makes the calling function return exactly the returns of the called function.
So, none of the following examples are tail calls:

 return (f(x)) -- results adjusted to 1
 return 2 * f(x)
 return x, f(x) -- additional results
 f(x); return -- results discarded
 return x or f(x) -- results adjusted to 1

http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 15 of 99http://www.lua.org/manual/5.1/manual.html

2.5.9 - Function Definitions

The syntax for function definition is

 function ::= function funcbody
 funcbody ::= `(´ [parlist] `)´ block end

The following syntactic sugar simplifies function definitions:

 stat ::= function funcname funcbody
 stat ::= local function Name funcbody
 funcname ::= Name {`.´ Name} [`:´ Name]

The statement

 function f () body end

translates to

 f = function () body end

The statement

 function t.a.b.c.f () body end

translates to

 t.a.b.c.f = function () body end

The statement

 local function f () body end

translates to

 local f; f = function () body end

not to

 local f = function () body end

(This only makes a difference when the body of the function contains references to f.)

A function definition is an executable expression, whose value has type function. When Lua
pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua
executes the function definition, the function is instantiated (or closed). This function instance
(or closure) is the final value of the expression. Different instances of the same function can
refer to different external local variables and can have different environment tables.

Parameters act as local variables that are initialized with the argument values:

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 16 of 99http://www.lua.org/manual/5.1/manual.html

 parlist ::= namelist [`,´ `...´] | `...´

When a function is called, the list of arguments is adjusted to the length of the list of
parameters, unless the function is a variadic or vararg function, which is indicated by three dots
('...') at the end of its parameter list. A vararg function does not adjust its argument list;
instead, it collects all extra arguments and supplies them to the function through a vararg
expression, which is also written as three dots. The value of this expression is a list of all actual
extra arguments, similar to a function with multiple results. If a vararg expression is used inside
another expression or in the middle of a list of expressions, then its return list is adjusted to one
element. If the expression is used as the last element of a list of expressions, then no
adjustment is made (unless that last expression is enclosed in parentheses).

As an example, consider the following definitions:

 function f(a, b) end
 function g(a, b, ...) end
 function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg
expression:

 CALL PARAMETERS

 f(3) a=3, b=nil
 f(3, 4) a=3, b=4
 f(3, 4, 5) a=3, b=4
 f(r(), 10) a=1, b=10
 f(r()) a=1, b=2

 g(3) a=3, b=nil, ... --> (nothing)
 g(3, 4) a=3, b=4, ... --> (nothing)
 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8
 g(5, r()) a=5, b=1, ... --> 2 3

Results are returned using the return statement (see §2.4.4). If control reaches the end of a
function without encountering a return statement, then the function returns with no results.

The colon syntax is used for defining methods, that is, functions that have an implicit extra
parameter self. Thus, the statement

 function t.a.b.c:f (params) body end

is syntactic sugar for

 t.a.b.c.f = function (self, params) body end

2.6 - Visibility Rules
Lua is a lexically scoped language. The scope of variables begins at the first statement after

http://www.lua.org/manual/5.1/manual.html#2.4.4

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 17 of 99http://www.lua.org/manual/5.1/manual.html

their declaration and lasts until the end of the innermost block that includes the declaration.
Consider the following example:

 x = 10 -- global variable
 do -- new block
 local x = x -- new 'x', with value 10
 print(x) --> 10
 x = x+1
 do -- another block
 local x = x+1 -- another 'x'
 print(x) --> 12
 end
 print(x) --> 11
 end
 print(x) --> 10 (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and
so the second x refers to the outside variable.

Because of the lexical scoping rules, local variables can be freely accessed by functions
defined inside their scope. A local variable used by an inner function is called an upvalue, or
external local variable, inside the inner function.

Notice that each execution of a local statement defines new local variables. Consider the
following example:

 a = {}
 local x = 20
 for i=1,10 do
 local y = 0
 a[i] = function () y=y+1; return x+y end
 end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these
closures uses a different y variable, while all of them share the same x.

2.7 - Error Handling
Because Lua is an embedded extension language, all Lua actions start from C code in the host
program calling a function from the Lua library (see lua_pcall). Whenever an error occurs
during Lua compilation or execution, control returns to C, which can take appropriate measures
(such as printing an error message).

Lua code can explicitly generate an error by calling the error function. If you need to catch
errors in Lua, you can use the pcall function.

2.8 - Metatables
Every value in Lua can have a metatable. This metatable is an ordinary Lua table that defines

http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#pdf-error
http://www.lua.org/manual/5.1/manual.html#pdf-pcall

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 18 of 99http://www.lua.org/manual/5.1/manual.html

the behavior of the original value under certain special operations. You can change several
aspects of the behavior of operations over a value by setting specific fields in its metatable. For
instance, when a non-numeric value is the operand of an addition, Lua checks for a function in
the field "__add" in its metatable. If it finds one, Lua calls this function to perform the addition.

We call the keys in a metatable events and the values metamethods. In the previous example,
the event is "add" and the metamethod is the function that performs the addition.

You can query the metatable of any value through the getmetatable function.

You can replace the metatable of tables through the setmetatable function. You cannot change
the metatable of other types from Lua (except by using the debug library); you must use the
C API for that.

Tables and full userdata have individual metatables (although multiple tables and userdata can
share their metatables). Values of all other types share one single metatable per type; that is,
there is one single metatable for all numbers, one for all strings, etc.

A metatable controls how an object behaves in arithmetic operations, order comparisons,
concatenation, length operation, and indexing. A metatable also can define a function to be
called when a userdata is garbage collected. For each of these operations Lua associates a
specific key called an event. When Lua performs one of these operations over a value, it checks
whether this value has a metatable with the corresponding event. If so, the value associated
with that key (the metamethod) controls how Lua will perform the operation.

Metatables control the operations listed next. Each operation is identified by its corresponding
name. The key for each operation is a string with its name prefixed by two underscores, '__'; for
instance, the key for operation "add" is the string "__add". The semantics of these operations is
better explained by a Lua function describing how the interpreter executes the operation.

The code shown here in Lua is only illustrative; the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation. All functions used in these descriptions
(rawget, tonumber, etc.) are described in §5.1. In particular, to retrieve the metamethod of a
given object, we use the expression

 metatable(obj)[event]

This should be read as

 rawget(getmetatable(obj) or {}, event)

That is, the access to a metamethod does not invoke other metamethods, and the access to
objects with no metatables does not fail (it simply results in nil).

"add": the + operation.

The function getbinhandler below defines how Lua chooses a handler for a binary
operation. First, Lua tries the first operand. If its type does not define a handler for the
operation, then Lua tries the second operand.

http://www.lua.org/manual/5.1/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-setmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-rawget
http://www.lua.org/manual/5.1/manual.html#pdf-tonumber
http://www.lua.org/manual/5.1/manual.html#5.1

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 19 of 99http://www.lua.org/manual/5.1/manual.html

 function getbinhandler (op1, op2, event)
 return metatable(op1)[event] or metatable(op2)[event]
 end

By using this function, the behavior of the op1 + op2 is

 function add_event (op1, op2)
 local o1, o2 = tonumber(op1), tonumber(op2)
 if o1 and o2 then -- both operands are numeric?
 return o1 + o2 -- '+' here is the primitive 'add'
 else -- at least one of the operands is not numeric
 local h = getbinhandler(op1, op2, "__add")
 if h then
 -- call the handler with both operands
 return (h(op1, op2))
 else -- no handler available: default behavior
 error(···)
 end
 end
 end

"sub": the - operation. Behavior similar to the "add" operation.
"mul": the * operation. Behavior similar to the "add" operation.
"div": the / operation. Behavior similar to the "add" operation.
"mod": the % operation. Behavior similar to the "add" operation, with the operation o1 -
floor(o1/o2)*o2 as the primitive operation.
"pow": the ^ (exponentiation) operation. Behavior similar to the "add" operation, with the
function pow (from the C math library) as the primitive operation.
"unm": the unary - operation.

 function unm_event (op)
 local o = tonumber(op)
 if o then -- operand is numeric?
 return -o -- '-' here is the primitive 'unm'
 else -- the operand is not numeric.
 -- Try to get a handler from the operand
 local h = metatable(op).__unm
 if h then
 -- call the handler with the operand
 return (h(op))
 else -- no handler available: default behavior
 error(···)
 end
 end
 end

"concat": the .. (concatenation) operation.

 function concat_event (op1, op2)
 if (type(op1) == "string" or type(op1) == "number") and
 (type(op2) == "string" or type(op2) == "number") then
 return op1 .. op2 -- primitive string concatenation

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 20 of 99http://www.lua.org/manual/5.1/manual.html

 else
 local h = getbinhandler(op1, op2, "__concat")
 if h then
 return (h(op1, op2))
 else
 error(···)
 end
 end
 end

"len": the # operation.

 function len_event (op)
 if type(op) == "string" then
 return strlen(op) -- primitive string length
 elseif type(op) == "table" then
 return #op -- primitive table length
 else
 local h = metatable(op).__len
 if h then
 -- call the handler with the operand
 return (h(op))
 else -- no handler available: default behavior
 error(···)
 end
 end
 end

See §2.5.5 for a description of the length of a table.

"eq": the == operation. The function getcomphandler defines how Lua chooses a
metamethod for comparison operators. A metamethod only is selected when both objects
being compared have the same type and the same metamethod for the selected
operation.

 function getcomphandler (op1, op2, event)
 if type(op1) ~= type(op2) then return nil end
 local mm1 = metatable(op1)[event]
 local mm2 = metatable(op2)[event]
 if mm1 == mm2 then return mm1 else return nil end
 end

The "eq" event is defined as follows:

 function eq_event (op1, op2)
 if type(op1) ~= type(op2) then -- different types?
 return false -- different objects
 end
 if op1 == op2 then -- primitive equal?
 return true -- objects are equal
 end
 -- try metamethod
 local h = getcomphandler(op1, op2, "__eq")

http://www.lua.org/manual/5.1/manual.html#2.5.5

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 21 of 99http://www.lua.org/manual/5.1/manual.html

 if h then
 return (h(op1, op2))
 else
 return false
 end
 end

a ~= b is equivalent to not (a == b).

"lt": the < operation.

 function lt_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 < op2 -- numeric comparison
 elseif type(op1) == "string" and type(op2) == "string" then
 return op1 < op2 -- lexicographic comparison
 else
 local h = getcomphandler(op1, op2, "__lt")
 if h then
 return (h(op1, op2))
 else
 error(···)
 end
 end
 end

a > b is equivalent to b < a.

"le": the <= operation.

 function le_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 <= op2 -- numeric comparison
 elseif type(op1) == "string" and type(op2) == "string" then
 return op1 <= op2 -- lexicographic comparison
 else
 local h = getcomphandler(op1, op2, "__le")
 if h then
 return (h(op1, op2))
 else
 h = getcomphandler(op1, op2, "__lt")
 if h then
 return not h(op2, op1)
 else
 error(···)
 end
 end
 end
 end

a >= b is equivalent to b <= a. Note that, in the absence of a "le" metamethod, Lua tries
the "lt", assuming that a <= b is equivalent to not (b < a).

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 22 of 99http://www.lua.org/manual/5.1/manual.html

"index": The indexing access table[key].

 function gettable_event (table, key)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 if v ~= nil then return v end
 h = metatable(table).__index
 if h == nil then return nil end
 else
 h = metatable(table).__index
 if h == nil then
 error(···)
 end
 end
 if type(h) == "function" then
 return (h(table, key)) -- call the handler
 else return h[key] -- or repeat operation on it
 end
 end

"newindex": The indexing assignment table[key] = value.

 function settable_event (table, key, value)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 if v ~= nil then rawset(table, key, value); return end
 h = metatable(table).__newindex
 if h == nil then rawset(table, key, value); return end
 else
 h = metatable(table).__newindex
 if h == nil then
 error(···)
 end
 end
 if type(h) == "function" then
 h(table, key,value) -- call the handler
 else h[key] = value -- or repeat operation on it
 end
 end

"call": called when Lua calls a value.

 function function_event (func, ...)
 if type(func) == "function" then
 return func(...) -- primitive call
 else
 local h = metatable(func).__call
 if h then
 return h(func, ...)
 else
 error(···)

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 23 of 99http://www.lua.org/manual/5.1/manual.html

 end
 end
 end

2.9 - Environments
Besides metatables, objects of types thread, function, and userdata have another table
associated with them, called their environment. Like metatables, environments are regular
tables and multiple objects can share the same environment.

Threads are created sharing the environment of the creating thread. Userdata and C functions
are created sharing the environment of the creating C function. Non-nested Lua functions
(created by loadfile, loadstring or load) are created sharing the environment of the creating
thread. Nested Lua functions are created sharing the environment of the creating Lua function.

Environments associated with userdata have no meaning for Lua. It is only a convenience
feature for programmers to associate a table to a userdata.

Environments associated with threads are called global environments. They are used as the
default environment for threads and non-nested Lua functions created by the thread and can be
directly accessed by C code (see §3.3).

The environment associated with a C function can be directly accessed by C code (see §3.3). It
is used as the default environment for other C functions and userdata created by the function.

Environments associated with Lua functions are used to resolve all accesses to global variables
within the function (see §2.3). They are used as the default environment for nested Lua
functions created by the function.

You can change the environment of a Lua function or the running thread by calling setfenv.
You can get the environment of a Lua function or the running thread by calling getfenv. To
manipulate the environment of other objects (userdata, C functions, other threads) you must
use the C API.

2.10 - Garbage Collection
Lua performs automatic memory management. This means that you have to worry neither
about allocating memory for new objects nor about freeing it when the objects are no longer
needed. Lua manages memory automatically by running a garbage collector from time to time to
collect all dead objects (that is, objects that are no longer accessible from Lua). All memory
used by Lua is subject to automatic management: tables, userdata, functions, threads, strings,
etc.

Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its
garbage-collection cycles: the garbage-collector pause and the garbage-collector step
multiplier. Both use percentage points as units (so that a value of 100 means an internal value
of 1).

http://www.lua.org/manual/5.1/manual.html#pdf-loadfile
http://www.lua.org/manual/5.1/manual.html#pdf-loadstring
http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 24 of 99http://www.lua.org/manual/5.1/manual.html

The garbage-collector pause controls how long the collector waits before starting a new cycle.
Larger values make the collector less aggressive. Values smaller than 100 mean the collector
will not wait to start a new cycle. A value of 200 means that the collector waits for the total
memory in use to double before starting a new cycle.

The step multiplier controls the relative speed of the collector relative to memory allocation.
Larger values make the collector more aggressive but also increase the size of each
incremental step. Values smaller than 100 make the collector too slow and can result in the
collector never finishing a cycle. The default, 200, means that the collector runs at "twice" the
speed of memory allocation.

You can change these numbers by calling lua_gc in C or collectgarbage in Lua. With these
functions you can also control the collector directly (e.g., stop and restart it).

2.10.1 - Garbage-Collection Metamethods

Using the C API, you can set garbage-collector metamethods for userdata (see §2.8). These
metamethods are also called finalizers. Finalizers allow you to coordinate Lua's garbage
collection with external resource management (such as closing files, network or database
connections, or freeing your own memory).

Garbage userdata with a field __gc in their metatables are not collected immediately by the
garbage collector. Instead, Lua puts them in a list. After the collection, Lua does the equivalent
of the following function for each userdata in that list:

 function gc_event (udata)
 local h = metatable(udata).__gc
 if h then
 h(udata)
 end
 end

At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse
order of their creation, among those collected in that cycle. That is, the first finalizer to be called
is the one associated with the userdata created last in the program. The userdata itself is freed
only in the next garbage-collection cycle.

2.10.2 - Weak Tables

A weak table is a table whose elements are weak references. A weak reference is ignored by
the garbage collector. In other words, if the only references to an object are weak references,
then the garbage collector will collect this object.

A weak table can have weak keys, weak values, or both. A table with weak keys allows the
collection of its keys, but prevents the collection of its values. A table with both weak keys and
weak values allows the collection of both keys and values. In any case, if either the key or the
value is collected, the whole pair is removed from the table. The weakness of a table is
controlled by the __mode field of its metatable. If the __mode field is a string containing the

http://www.lua.org/manual/5.1/manual.html#lua_gc
http://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage
http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 25 of 99http://www.lua.org/manual/5.1/manual.html

character 'k', the keys in the table are weak. If __mode contains 'v', the values in the table are
weak.

After you use a table as a metatable, you should not change the value of its __mode field.
Otherwise, the weak behavior of the tables controlled by this metatable is undefined.

2.11 - Coroutines
Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents
an independent thread of execution. Unlike threads in multithread systems, however, a
coroutine only suspends its execution by explicitly calling a yield function.

You create a coroutine with a call to coroutine.create. Its sole argument is a function that is
the main function of the coroutine. The create function only creates a new coroutine and
returns a handle to it (an object of type thread); it does not start the coroutine execution.

When you first call coroutine.resume, passing as its first argument a thread returned by
coroutine.create, the coroutine starts its execution, at the first line of its main function. Extra
arguments passed to coroutine.resume are passed on to the coroutine main function. After the
coroutine starts running, it runs until it terminates or yields.

A coroutine can terminate its execution in two ways: normally, when its main function returns
(explicitly or implicitly, after the last instruction); and abnormally, if there is an unprotected error.
In the first case, coroutine.resume returns true, plus any values returned by the coroutine main
function. In case of errors, coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When a coroutine yields, the corresponding
coroutine.resume returns immediately, even if the yield happens inside nested function calls
(that is, not in the main function, but in a function directly or indirectly called by the main
function). In the case of a yield, coroutine.resume also returns true, plus any values passed to
coroutine.yield. The next time you resume the same coroutine, it continues its execution from
the point where it yielded, with the call to coroutine.yield returning any extra arguments
passed to coroutine.resume.

Like coroutine.create, the coroutine.wrap function also creates a coroutine, but instead of
returning the coroutine itself, it returns a function that, when called, resumes the coroutine. Any
arguments passed to this function go as extra arguments to coroutine.resume. coroutine.wrap
returns all the values returned by coroutine.resume, except the first one (the boolean error
code). Unlike coroutine.resume, coroutine.wrap does not catch errors; any error is propagated
to the caller.

As an example, consider the following code:

 function foo (a)
 print("foo", a)
 return coroutine.yield(2*a)
 end

http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 26 of 99http://www.lua.org/manual/5.1/manual.html

 co = coroutine.create(function (a,b)
 print("co-body", a, b)
 local r = foo(a+1)
 print("co-body", r)
 local r, s = coroutine.yield(a+b, a-b)
 print("co-body", r, s)
 return b, "end"
 end)

 print("main", coroutine.resume(co, 1, 10))
 print("main", coroutine.resume(co, "r"))
 print("main", coroutine.resume(co, "x", "y"))
 print("main", coroutine.resume(co, "x", "y"))

When you run it, it produces the following output:

 co-body 1 10
 foo 2

 main true 4
 co-body r
 main true 11 -9
 co-body x y
 main true 10 end
 main false cannot resume dead coroutine

3 - The Application Program Interface
This section describes the C API for Lua, that is, the set of C functions available to the host
program to communicate with Lua. All API functions and related types and constants are
declared in the header file lua.h.

Even when we use the term "function", any facility in the API may be provided as a macro
instead. All such macros use each of their arguments exactly once (except for the first
argument, which is always a Lua state), and so do not generate any hidden side-effects.

As in most C libraries, the Lua API functions do not check their arguments for validity or
consistency. However, you can change this behavior by compiling Lua with a proper definition
for the macro luai_apicheck, in file luaconf.h.

3.1 - The Stack
Lua uses a virtual stack to pass values to and from C. Each element in this stack represents a
Lua value (nil, number, string, etc.).

Whenever Lua calls C, the called function gets a new stack, which is independent of previous
stacks and of stacks of C functions that are still active. This stack initially contains any
arguments to the C function and it is where the C function pushes its results to be returned to

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 27 of 99http://www.lua.org/manual/5.1/manual.html

the caller (see lua_CFunction).

For convenience, most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack by using an index: A positive index
represents an absolute stack position (starting at 1); a negative index represents an offset
relative to the top of the stack. More specifically, if the stack has n elements, then index 1
represents the first element (that is, the element that was pushed onto the stack first) and
index n represents the last element; index -1 also represents the last element (that is, the
element at the top) and index -n represents the first element. We say that an index is valid if it
lies between 1 and the stack top (that is, if 1 ≤ abs(index) ≤ top).

3.2 - Stack Size
When you interact with Lua API, you are responsible for ensuring consistency. In particular, you
are responsible for controlling stack overflow. You can use the function lua_checkstack to grow
the stack size.

Whenever Lua calls C, it ensures that at least LUA_MINSTACK stack positions are available.
LUA_MINSTACK is defined as 20, so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.

Most query functions accept as indices any value inside the available stack space, that is,
indices up to the maximum stack size you have set through lua_checkstack. Such indices are
called acceptable indices. More formally, we define an acceptable index as follows:

 (index < 0 && abs(index) <= top) ||
 (index > 0 && index <= stackspace)

Note that 0 is never an acceptable index.

3.3 - Pseudo-Indices
Unless otherwise noted, any function that accepts valid indices can also be called with pseudo-
indices, which represent some Lua values that are accessible to C code but which are not in the
stack. Pseudo-indices are used to access the thread environment, the function environment,
the registry, and the upvalues of a C function (see §3.4).

The thread environment (where global variables live) is always at pseudo-index
LUA_GLOBALSINDEX. The environment of the running C function is always at pseudo-index
LUA_ENVIRONINDEX.

To access and change the value of global variables, you can use regular table operations over
an environment table. For instance, to access the value of a global variable, do

 lua_getfield(L, LUA_GLOBALSINDEX, varname);

3.4 - C Closures

http://www.lua.org/manual/5.1/manual.html#lua_CFunction
http://www.lua.org/manual/5.1/manual.html#lua_checkstack
http://www.lua.org/manual/5.1/manual.html#lua_checkstack
http://www.lua.org/manual/5.1/manual.html#3.4

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 28 of 99http://www.lua.org/manual/5.1/manual.html

[-o, +p, x]

When a C function is created, it is possible to associate some values with it, thus creating a
C closure; these values are called upvalues and are accessible to the function whenever it is
called (see lua_pushcclosure).

Whenever a C function is called, its upvalues are located at specific pseudo-indices. These
pseudo-indices are produced by the macro lua_upvalueindex. The first value associated with a
function is at position lua_upvalueindex(1), and so on. Any access to lua_upvalueindex(n),
where n is greater than the number of upvalues of the current function (but not greater than
256), produces an acceptable (but invalid) index.

3.5 - Registry
Lua provides a registry, a pre-defined table that can be used by any C code to store whatever
Lua value it needs to store. This table is always located at pseudo-index LUA_REGISTRYINDEX.
Any C library can store data into this table, but it should take care to choose keys different from
those used by other libraries, to avoid collisions. Typically, you should use as key a string
containing your library name or a light userdata with the address of a C object in your code.

The integer keys in the registry are used by the reference mechanism, implemented by the
auxiliary library, and therefore should not be used for other purposes.

3.6 - Error Handling in C
Internally, Lua uses the C longjmp facility to handle errors. (You can also choose to use
exceptions if you use C++; see file luaconf.h.) When Lua faces any error (such as memory
allocation errors, type errors, syntax errors, and runtime errors) it raises an error; that is, it does
a long jump. A protected environment uses setjmp to set a recover point; any error jumps to the
most recent active recover point.

Most functions in the API can throw an error, for instance due to a memory allocation error. The
documentation for each function indicates whether it can throw errors.

Inside a C function you can throw an error by calling lua_error.

3.7 - Functions and Types
Here we list all functions and types from the C API in alphabetical order. Each function has an
indicator like this:

The first field, o, is how many elements the function pops from the stack. The second field, p, is
how many elements the function pushes onto the stack. (Any function always pushes its results
after popping its arguments.) A field in the form x|y means the function can push (or pop) x or y
elements, depending on the situation; an interrogation mark '?' means that we cannot know how
many elements the function pops/pushes by looking only at its arguments (e.g., they may
depend on what is on the stack). The third field, x, tells whether the function may throw errors:

http://www.lua.org/manual/5.1/manual.html#lua_pushcclosure
http://www.lua.org/manual/5.1/manual.html#lua_error

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 29 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

'-' means the function never throws any error; 'm' means the function may throw an error only
due to not enough memory; 'e' means the function may throw other kinds of errors; 'v' means
the function may throw an error on purpose.

lua_Alloc

typedef void * (*lua_Alloc) (void *ud,
 void *ptr,
 size_t osize,
 size_t nsize);

The type of the memory-allocation function used by Lua states. The allocator function must
provide a functionality similar to realloc, but not exactly the same. Its arguments are ud, an
opaque pointer passed to lua_newstate; ptr, a pointer to the block being
allocated/reallocated/freed; osize, the original size of the block; nsize, the new size of the
block. ptr is NULL if and only if osize is zero. When nsize is zero, the allocator must return NULL;
if osize is not zero, it should free the block pointed to by ptr. When nsize is not zero, the
allocator returns NULL if and only if it cannot fill the request. When nsize is not zero and osize is
zero, the allocator should behave like malloc. When nsize and osize are not zero, the allocator
behaves like realloc. Lua assumes that the allocator never fails when osize >= nsize.

Here is a simple implementation for the allocator function. It is used in the auxiliary library by
luaL_newstate.

 static void *l_alloc (void *ud, void *ptr, size_t osize,
 size_t nsize) {
 (void)ud; (void)osize; /* not used */
 if (nsize == 0) {
 free(ptr);
 return NULL;
 }
 else
 return realloc(ptr, nsize);
 }

This code assumes that free(NULL) has no effect and that realloc(NULL, size) is equivalent to
malloc(size). ANSI C ensures both behaviors.

lua_atpanic

lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Sets a new panic function and returns the old one.

If an error happens outside any protected environment, Lua calls a panic function and then calls
exit(EXIT_FAILURE), thus exiting the host application. Your panic function can avoid this exit by
never returning (e.g., doing a long jump).

http://www.lua.org/manual/5.1/manual.html#lua_newstate
http://www.lua.org/manual/5.1/manual.html#luaL_newstate

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 30 of 99http://www.lua.org/manual/5.1/manual.html

[-(nargs + 1), +nresults, e]

The panic function can access the error message at the top of the stack.

lua_call

void lua_call (lua_State *L, int nargs, int nresults);

Calls a function.

To call a function you must use the following protocol: first, the function to be called is pushed
onto the stack; then, the arguments to the function are pushed in direct order; that is, the first
argument is pushed first. Finally you call lua_call; nargs is the number of arguments that you
pushed onto the stack. All arguments and the function value are popped from the stack when
the function is called. The function results are pushed onto the stack when the function returns.
The number of results is adjusted to nresults, unless nresults is LUA_MULTRET. In this case, all
results from the function are pushed. Lua takes care that the returned values fit into the stack
space. The function results are pushed onto the stack in direct order (the first result is pushed
first), so that after the call the last result is on the top of the stack.

Any error inside the called function is propagated upwards (with a longjmp).

The following example shows how the host program can do the equivalent to this Lua code:

 a = f("how", t.x, 14)

Here it is in C:

 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* function to be called */
 lua_pushstring(L, "how"); /* 1st argument */
 lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* table to be indexed */
 lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */
 lua_remove(L, -2); /* remove 't' from the stack */
 lua_pushinteger(L, 14); /* 3rd argument */
 lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */
 lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* set global 'a' */

Note that the code above is "balanced": at its end, the stack is back to its original configuration.
This is considered good programming practice.

lua_CFunction

typedef int (*lua_CFunction) (lua_State *L);

Type for C functions.

In order to communicate properly with Lua, a C function must use the following protocol, which
defines the way parameters and results are passed: a C function receives its arguments from
Lua in its stack in direct order (the first argument is pushed first). So, when the function starts,

http://www.lua.org/manual/5.1/manual.html#lua_call

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 31 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, m]

[-0, +0, -]

lua_gettop(L) returns the number of arguments received by the function. The first argument (if
any) is at index 1 and its last argument is at index lua_gettop(L). To return values to Lua, a
C function just pushes them onto the stack, in direct order (the first result is pushed first), and
returns the number of results. Any other value in the stack below the results will be properly
discarded by Lua. Like a Lua function, a C function called by Lua can also return many results.

As an example, the following function receives a variable number of numerical arguments and
returns their average and sum:

 static int foo (lua_State *L) {
 int n = lua_gettop(L); /* number of arguments */
 lua_Number sum = 0;
 int i;
 for (i = 1; i <= n; i++) {
 if (!lua_isnumber(L, i)) {
 lua_pushstring(L, "incorrect argument");
 lua_error(L);
 }
 sum += lua_tonumber(L, i);
 }
 lua_pushnumber(L, sum/n); /* first result */
 lua_pushnumber(L, sum); /* second result */
 return 2; /* number of results */
 }

lua_checkstack

int lua_checkstack (lua_State *L, int extra);

Ensures that there are at least extra free stack slots in the stack. It returns false if it cannot
grow the stack to that size. This function never shrinks the stack; if the stack is already larger
than the new size, it is left unchanged.

lua_close

void lua_close (lua_State *L);

Destroys all objects in the given Lua state (calling the corresponding garbage-collection
metamethods, if any) and frees all dynamic memory used by this state. On several platforms,
you may not need to call this function, because all resources are naturally released when the
host program ends. On the other hand, long-running programs, such as a daemon or a web
server, might need to release states as soon as they are not needed, to avoid growing too
large.

lua_concat

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 32 of 99http://www.lua.org/manual/5.1/manual.html

[-n, +1, e]

[-0, +(0|1), -]

[-0, +1, m]

[-0, +0, m]

[-0, +0, e]

void lua_concat (lua_State *L, int n);

Concatenates the n values at the top of the stack, pops them, and leaves the result at the top. If
n is 1, the result is the single value on the stack (that is, the function does nothing); if n is 0, the
result is the empty string. Concatenation is performed following the usual semantics of Lua (see
§2.5.4).

lua_cpcall

int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

Calls the C function func in protected mode. func starts with only one element in its stack, a
light userdata containing ud. In case of errors, lua_cpcall returns the same error codes as
lua_pcall, plus the error object on the top of the stack; otherwise, it returns zero, and does not
change the stack. All values returned by func are discarded.

lua_createtable

void lua_createtable (lua_State *L, int narr, int nrec);

Creates a new empty table and pushes it onto the stack. The new table has space pre-allocated
for narr array elements and nrec non-array elements. This pre-allocation is useful when you
know exactly how many elements the table will have. Otherwise you can use the function
lua_newtable.

lua_dump

int lua_dump (lua_State *L, lua_Writer writer, void *data);

Dumps a function as a binary chunk. Receives a Lua function on the top of the stack and
produces a binary chunk that, if loaded again, results in a function equivalent to the one
dumped. As it produces parts of the chunk, lua_dump calls function writer (see lua_Writer)
with the given data to write them.

The value returned is the error code returned by the last call to the writer; 0 means no errors.

This function does not pop the Lua function from the stack.

lua_equal

int lua_equal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are equal, following the
semantics of the Lua == operator (that is, may call metamethods). Otherwise returns 0. Also

http://www.lua.org/manual/5.1/manual.html#2.5.4
http://www.lua.org/manual/5.1/manual.html#lua_cpcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_newtable
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_Writer

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 33 of 99http://www.lua.org/manual/5.1/manual.html

[-1, +0, v]

[-0, +0, e]

[-0, +0, -]

[-0, +1, -]

returns 0 if any of the indices is non valid.

lua_error

int lua_error (lua_State *L);

Generates a Lua error. The error message (which can actually be a Lua value of any type) must
be on the stack top. This function does a long jump, and therefore never returns. (see
luaL_error).

lua_gc

int lua_gc (lua_State *L, int what, int data);

Controls the garbage collector.

This function performs several tasks, according to the value of the parameter what:

LUA_GCSTOP: stops the garbage collector.
LUA_GCRESTART: restarts the garbage collector.
LUA_GCCOLLECT: performs a full garbage-collection cycle.
LUA_GCCOUNT: returns the current amount of memory (in Kbytes) in use by Lua.
LUA_GCCOUNTB: returns the remainder of dividing the current amount of bytes of memory in
use by Lua by 1024.
LUA_GCSTEP: performs an incremental step of garbage collection. The step "size" is
controlled by data (larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of data. The function returns
1 if the step finished a garbage-collection cycle.
LUA_GCSETPAUSE: sets data as the new value for the pause of the collector (see §2.10).
The function returns the previous value of the pause.
LUA_GCSETSTEPMUL: sets data as the new value for the step multiplier of the collector (see
§2.10). The function returns the previous value of the step multiplier.

lua_getallocf

lua_Alloc lua_getallocf (lua_State *L, void **ud);

Returns the memory-allocation function of a given state. If ud is not NULL, Lua stores in *ud the
opaque pointer passed to lua_newstate.

lua_getfenv

void lua_getfenv (lua_State *L, int index);

http://www.lua.org/manual/5.1/manual.html#luaL_error
http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#lua_newstate

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 34 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +1, e]

[-0, +1, e]

[-0, +(0|1), -]

[-1, +1, e]

[-0, +0, -]

Pushes onto the stack the environment table of the value at the given index.

lua_getfield

void lua_getfield (lua_State *L, int index, const char *k);

Pushes onto the stack the value t[k], where t is the value at the given valid index. As in Lua,
this function may trigger a metamethod for the "index" event (see §2.8).

lua_getglobal

void lua_getglobal (lua_State *L, const char *name);

Pushes onto the stack the value of the global name. It is defined as a macro:

 #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)

lua_getmetatable

int lua_getmetatable (lua_State *L, int index);

Pushes onto the stack the metatable of the value at the given acceptable index. If the index is
not valid, or if the value does not have a metatable, the function returns 0 and pushes nothing
on the stack.

lua_gettable

void lua_gettable (lua_State *L, int index);

Pushes onto the stack the value t[k], where t is the value at the given valid index and k is the
value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). As in Lua, this
function may trigger a metamethod for the "index" event (see §2.8).

lua_gettop

int lua_gettop (lua_State *L);

Returns the index of the top element in the stack. Because indices start at 1, this result is equal
to the number of elements in the stack (and so 0 means an empty stack).

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 35 of 99http://www.lua.org/manual/5.1/manual.html

[-1, +1, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

lua_insert

void lua_insert (lua_State *L, int index);

Moves the top element into the given valid index, shifting up the elements above this index to
open space. Cannot be called with a pseudo-index, because a pseudo-index is not an actual
stack position.

lua_Integer

typedef ptrdiff_t lua_Integer;

The type used by the Lua API to represent integral values.

By default it is a ptrdiff_t, which is usually the largest signed integral type the machine
handles "comfortably".

lua_isboolean

int lua_isboolean (lua_State *L, int index);

Returns 1 if the value at the given acceptable index has type boolean, and 0 otherwise.

lua_iscfunction

int lua_iscfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a C function, and 0 otherwise.

lua_isfunction

int lua_isfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a function (either C or Lua), and
0 otherwise.

lua_islightuserdata

int lua_islightuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a light userdata, and 0 otherwise.

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 36 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

lua_isnil

int lua_isnil (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is nil, and 0 otherwise.

lua_isnone

int lua_isnone (lua_State *L, int index);

Returns 1 if the given acceptable index is not valid (that is, it refers to an element outside the
current stack), and 0 otherwise.

lua_isnoneornil

int lua_isnoneornil (lua_State *L, int index);

Returns 1 if the given acceptable index is not valid (that is, it refers to an element outside the
current stack) or if the value at this index is nil, and 0 otherwise.

lua_isnumber

int lua_isnumber (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a number or a string convertible to a
number, and 0 otherwise.

lua_isstring

int lua_isstring (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a string or a number (which is always
convertible to a string), and 0 otherwise.

lua_istable

int lua_istable (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a table, and 0 otherwise.

lua_isthread

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 37 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +0, -]

[-0, +0, e]

[-0, +1, -]

int lua_isthread (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a thread, and 0 otherwise.

lua_isuserdata

int lua_isuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a userdata (either full or light), and
0 otherwise.

lua_lessthan

int lua_lessthan (lua_State *L, int index1, int index2);

Returns 1 if the value at acceptable index index1 is smaller than the value at acceptable index
index2, following the semantics of the Lua < operator (that is, may call metamethods).
Otherwise returns 0. Also returns 0 if any of the indices is non valid.

lua_load

int lua_load (lua_State *L,
 lua_Reader reader,
 void *data,
 const char *chunkname);

Loads a Lua chunk. If there are no errors, lua_load pushes the compiled chunk as a Lua
function on top of the stack. Otherwise, it pushes an error message. The return values of
lua_load are:

0: no errors;
LUA_ERRSYNTAX: syntax error during pre-compilation;
LUA_ERRMEM: memory allocation error.

This function only loads a chunk; it does not run it.

lua_load automatically detects whether the chunk is text or binary, and loads it accordingly (see
program luac).

The lua_load function uses a user-supplied reader function to read the chunk (see
lua_Reader). The data argument is an opaque value passed to the reader function.

The chunkname argument gives a name to the chunk, which is used for error messages and in
debug information (see §3.8).

http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#pdf-LUA_ERRMEM
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_Reader
http://www.lua.org/manual/5.1/manual.html#3.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 38 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +1, m]

[-0, +1, m]

[-0, +1, m]

lua_newstate

lua_State *lua_newstate (lua_Alloc f, void *ud);

Creates a new, independent state. Returns NULL if cannot create the state (due to lack of
memory). The argument f is the allocator function; Lua does all memory allocation for this state
through this function. The second argument, ud, is an opaque pointer that Lua simply passes to
the allocator in every call.

lua_newtable

void lua_newtable (lua_State *L);

Creates a new empty table and pushes it onto the stack. It is equivalent to lua_createtable(L,
0, 0).

lua_newthread

lua_State *lua_newthread (lua_State *L);

Creates a new thread, pushes it on the stack, and returns a pointer to a lua_State that
represents this new thread. The new state returned by this function shares with the original
state all global objects (such as tables), but has an independent execution stack.

There is no explicit function to close or to destroy a thread. Threads are subject to garbage
collection, like any Lua object.

lua_newuserdata

void *lua_newuserdata (lua_State *L, size_t size);

This function allocates a new block of memory with the given size, pushes onto the stack a new
full userdata with the block address, and returns this address.

Userdata represent C values in Lua. A full userdata represents a block of memory. It is an
object (like a table): you must create it, it can have its own metatable, and you can detect when
it is being collected. A full userdata is only equal to itself (under raw equality).

When Lua collects a full userdata with a gc metamethod, Lua calls the metamethod and marks
the userdata as finalized. When this userdata is collected again then Lua frees its
corresponding memory.

lua_next

http://www.lua.org/manual/5.1/manual.html#lua_State

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 39 of 99http://www.lua.org/manual/5.1/manual.html

[-1, +(2|0), e]

[-0, +0, -]

[-(nargs + 1), +(nresults|1), -]

int lua_next (lua_State *L, int index);

Pops a key from the stack, and pushes a key-value pair from the table at the given index (the
"next" pair after the given key). If there are no more elements in the table, then lua_next returns
0 (and pushes nothing).

A typical traversal looks like this:

 /* table is in the stack at index 't' */
 lua_pushnil(L); /* first key */
 while (lua_next(L, t) != 0) {
 /* uses 'key' (at index -2) and 'value' (at index -1) */
 printf("%s - %s\n",
 lua_typename(L, lua_type(L, -2)),
 lua_typename(L, lua_type(L, -1)));
 /* removes 'value'; keeps 'key' for next iteration */
 lua_pop(L, 1);
 }

While traversing a table, do not call lua_tolstring directly on a key, unless you know that the
key is actually a string. Recall that lua_tolstring changes the value at the given index; this
confuses the next call to lua_next.

lua_Number

typedef double lua_Number;

The type of numbers in Lua. By default, it is double, but that can be changed in luaconf.h.

Through the configuration file you can change Lua to operate with another type for numbers
(e.g., float or long).

lua_objlen

size_t lua_objlen (lua_State *L, int index);

Returns the "length" of the value at the given acceptable index: for strings, this is the string
length; for tables, this is the result of the length operator ('#'); for userdata, this is the size of the
block of memory allocated for the userdata; for other values, it is 0.

lua_pcall

int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);

Calls a function in protected mode.

http://www.lua.org/manual/5.1/manual.html#lua_next
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_next

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 40 of 99http://www.lua.org/manual/5.1/manual.html

[-n, +0, -]

[-0, +1, -]

[-n, +1, m]

Both nargs and nresults have the same meaning as in lua_call. If there are no errors during
the call, lua_pcall behaves exactly like lua_call. However, if there is any error, lua_pcall
catches it, pushes a single value on the stack (the error message), and returns an error code.
Like lua_call, lua_pcall always removes the function and its arguments from the stack.

If errfunc is 0, then the error message returned on the stack is exactly the original error
message. Otherwise, errfunc is the stack index of an error handler function. (In the current
implementation, this index cannot be a pseudo-index.) In case of runtime errors, this function
will be called with the error message and its return value will be the message returned on the
stack by lua_pcall.

Typically, the error handler function is used to add more debug information to the error
message, such as a stack traceback. Such information cannot be gathered after the return of
lua_pcall, since by then the stack has unwound.

The lua_pcall function returns 0 in case of success or one of the following error codes (defined
in lua.h):

LUA_ERRRUN: a runtime error.
LUA_ERRMEM: memory allocation error. For such errors, Lua does not call the error handler
function.
LUA_ERRERR: error while running the error handler function.

lua_pop

void lua_pop (lua_State *L, int n);

Pops n elements from the stack.

lua_pushboolean

void lua_pushboolean (lua_State *L, int b);

Pushes a boolean value with value b onto the stack.

lua_pushcclosure

void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

Pushes a new C closure onto the stack.

When a C function is created, it is possible to associate some values with it, thus creating a
C closure (see §3.4); these values are then accessible to the function whenever it is called. To
associate values with a C function, first these values should be pushed onto the stack (when
there are multiple values, the first value is pushed first). Then lua_pushcclosure is called to

http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#3.4
http://www.lua.org/manual/5.1/manual.html#lua_pushcclosure

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 41 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +1, m]

[-0, +1, m]

[-0, +1, -]

create and push the C function onto the stack, with the argument n telling how many values
should be associated with the function. lua_pushcclosure also pops these values from the
stack.

The maximum value for n is 255.

lua_pushcfunction

void lua_pushcfunction (lua_State *L, lua_CFunction f);

Pushes a C function onto the stack. This function receives a pointer to a C function and pushes
onto the stack a Lua value of type function that, when called, invokes the corresponding
C function.

Any function to be registered in Lua must follow the correct protocol to receive its parameters
and return its results (see lua_CFunction).

lua_pushcfunction is defined as a macro:

 #define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0)

lua_pushfstring

const char *lua_pushfstring (lua_State *L, const char *fmt, ...);

Pushes onto the stack a formatted string and returns a pointer to this string. It is similar to the
C function sprintf, but has some important differences:

You do not have to allocate space for the result: the result is a Lua string and Lua takes
care of memory allocation (and deallocation, through garbage collection).
The conversion specifiers are quite restricted. There are no flags, widths, or precisions.
The conversion specifiers can only be '%%' (inserts a '%' in the string), '%s' (inserts a zero-
terminated string, with no size restrictions), '%f' (inserts a lua_Number), '%p' (inserts a
pointer as a hexadecimal numeral), '%d' (inserts an int), and '%c' (inserts an int as a
character).

lua_pushinteger

void lua_pushinteger (lua_State *L, lua_Integer n);

Pushes a number with value n onto the stack.

lua_pushlightuserdata

http://www.lua.org/manual/5.1/manual.html#lua_pushcclosure
http://www.lua.org/manual/5.1/manual.html#lua_CFunction
http://www.lua.org/manual/5.1/manual.html#lua_Number

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 42 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +1, -]

[-0, +1, m]

[-0, +1, m]

[-0, +1, -]

[-0, +1, -]

[-0, +1, m]

void lua_pushlightuserdata (lua_State *L, void *p);

Pushes a light userdata onto the stack.

Userdata represent C values in Lua. A light userdata represents a pointer. It is a value (like a
number): you do not create it, it has no individual metatable, and it is not collected (as it was
never created). A light userdata is equal to "any" light userdata with the same C address.

lua_pushliteral

void lua_pushliteral (lua_State *L, const char *s);

This macro is equivalent to lua_pushlstring, but can be used only when s is a literal string. In
these cases, it automatically provides the string length.

lua_pushlstring

void lua_pushlstring (lua_State *L, const char *s, size_t len);

Pushes the string pointed to by s with size len onto the stack. Lua makes (or reuses) an internal
copy of the given string, so the memory at s can be freed or reused immediately after the
function returns. The string can contain embedded zeros.

lua_pushnil

void lua_pushnil (lua_State *L);

Pushes a nil value onto the stack.

lua_pushnumber

void lua_pushnumber (lua_State *L, lua_Number n);

Pushes a number with value n onto the stack.

lua_pushstring

void lua_pushstring (lua_State *L, const char *s);

Pushes the zero-terminated string pointed to by s onto the stack. Lua makes (or reuses) an
internal copy of the given string, so the memory at s can be freed or reused immediately after
the function returns. The string cannot contain embedded zeros; it is assumed to end at the first
zero.

http://www.lua.org/manual/5.1/manual.html#lua_pushlstring

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 43 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +1, -]

[-0, +1, -]

[-0, +1, m]

[-0, +0, -]

[-1, +1, -]

[-0, +1, -]

lua_pushthread

int lua_pushthread (lua_State *L);

Pushes the thread represented by L onto the stack. Returns 1 if this thread is the main thread of
its state.

lua_pushvalue

void lua_pushvalue (lua_State *L, int index);

Pushes a copy of the element at the given valid index onto the stack.

lua_pushvfstring

const char *lua_pushvfstring (lua_State *L,
 const char *fmt,
 va_list argp);

Equivalent to lua_pushfstring, except that it receives a va_list instead of a variable number of
arguments.

lua_rawequal

int lua_rawequal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are primitively equal (that
is, without calling metamethods). Otherwise returns 0. Also returns 0 if any of the indices are
non valid.

lua_rawget

void lua_rawget (lua_State *L, int index);

Similar to lua_gettable, but does a raw access (i.e., without metamethods).

lua_rawgeti

void lua_rawgeti (lua_State *L, int index, int n);

Pushes onto the stack the value t[n], where t is the value at the given valid index. The access

http://www.lua.org/manual/5.1/manual.html#lua_pushfstring
http://www.lua.org/manual/5.1/manual.html#lua_gettable

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 44 of 99http://www.lua.org/manual/5.1/manual.html

[-2, +0, m]

[-1, +0, m]

[-0, +0, e]

is raw; that is, it does not invoke metamethods.

lua_rawset

void lua_rawset (lua_State *L, int index);

Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

lua_rawseti

void lua_rawseti (lua_State *L, int index, int n);

Does the equivalent of t[n] = v, where t is the value at the given valid index and v is the value
at the top of the stack.

This function pops the value from the stack. The assignment is raw; that is, it does not invoke
metamethods.

lua_Reader

typedef const char * (*lua_Reader) (lua_State *L,
 void *data,
 size_t *size);

The reader function used by lua_load. Every time it needs another piece of the chunk, lua_load
calls the reader, passing along its data parameter. The reader must return a pointer to a block
of memory with a new piece of the chunk and set size to the block size. The block must exist
until the reader function is called again. To signal the end of the chunk, the reader must return
NULL or set size to zero. The reader function may return pieces of any size greater than zero.

lua_register

void lua_register (lua_State *L,
 const char *name,
 lua_CFunction f);

Sets the C function f as the new value of global name. It is defined as a macro:

 #define lua_register(L,n,f) \
 (lua_pushcfunction(L, f), lua_setglobal(L, n))

lua_remove

http://www.lua.org/manual/5.1/manual.html#lua_settable
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 45 of 99http://www.lua.org/manual/5.1/manual.html

[-1, +0, -]

[-1, +0, -]

[-?, +?, -]

[-0, +0, -]

[-1, +0, -]

void lua_remove (lua_State *L, int index);

Removes the element at the given valid index, shifting down the elements above this index to fill
the gap. Cannot be called with a pseudo-index, because a pseudo-index is not an actual stack
position.

lua_replace

void lua_replace (lua_State *L, int index);

Moves the top element into the given position (and pops it), without shifting any element
(therefore replacing the value at the given position).

lua_resume

int lua_resume (lua_State *L, int narg);

Starts and resumes a coroutine in a given thread.

To start a coroutine, you first create a new thread (see lua_newthread); then you push onto its
stack the main function plus any arguments; then you call lua_resume, with narg being the
number of arguments. This call returns when the coroutine suspends or finishes its execution.
When it returns, the stack contains all values passed to lua_yield, or all values returned by the
body function. lua_resume returns LUA_YIELD if the coroutine yields, 0 if the coroutine finishes its
execution without errors, or an error code in case of errors (see lua_pcall). In case of errors,
the stack is not unwound, so you can use the debug API over it. The error message is on the
top of the stack. To restart a coroutine, you put on its stack only the values to be passed as
results from yield, and then call lua_resume.

lua_setallocf

void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Changes the allocator function of a given state to f with user data ud.

lua_setfenv

int lua_setfenv (lua_State *L, int index);

Pops a table from the stack and sets it as the new environment for the value at the given index.
If the value at the given index is neither a function nor a thread nor a userdata, lua_setfenv
returns 0. Otherwise it returns 1.

http://www.lua.org/manual/5.1/manual.html#lua_newthread
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#lua_yield
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#pdf-LUA_YIELD
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#lua_setfenv

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 46 of 99http://www.lua.org/manual/5.1/manual.html

[-1, +0, e]

[-1, +0, e]

[-1, +0, -]

[-2, +0, e]

[-?, +?, -]

lua_setfield

void lua_setfield (lua_State *L, int index, const char *k);

Does the equivalent to t[k] = v, where t is the value at the given valid index and v is the value
at the top of the stack.

This function pops the value from the stack. As in Lua, this function may trigger a metamethod
for the "newindex" event (see §2.8).

lua_setglobal

void lua_setglobal (lua_State *L, const char *name);

Pops a value from the stack and sets it as the new value of global name. It is defined as a macro:

 #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)

lua_setmetatable

int lua_setmetatable (lua_State *L, int index);

Pops a table from the stack and sets it as the new metatable for the value at the given
acceptable index.

lua_settable

void lua_settable (lua_State *L, int index);

Does the equivalent to t[k] = v, where t is the value at the given valid index, v is the value at
the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. As in Lua, this function may
trigger a metamethod for the "newindex" event (see §2.8).

lua_settop

void lua_settop (lua_State *L, int index);

Accepts any acceptable index, or 0, and sets the stack top to this index. If the new top is larger
than the old one, then the new elements are filled with nil. If index is 0, then all stack elements
are removed.

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 47 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

lua_State

typedef struct lua_State lua_State;

Opaque structure that keeps the whole state of a Lua interpreter. The Lua library is fully
reentrant: it has no global variables. All information about a state is kept in this structure.

A pointer to this state must be passed as the first argument to every function in the library,
except to lua_newstate, which creates a Lua state from scratch.

lua_status

int lua_status (lua_State *L);

Returns the status of the thread L.

The status can be 0 for a normal thread, an error code if the thread finished its execution with an
error, or LUA_YIELD if the thread is suspended.

lua_toboolean

int lua_toboolean (lua_State *L, int index);

Converts the Lua value at the given acceptable index to a C boolean value (0 or 1). Like all
tests in Lua, lua_toboolean returns 1 for any Lua value different from false and nil; otherwise it
returns 0. It also returns 0 when called with a non-valid index. (If you want to accept only actual
boolean values, use lua_isboolean to test the value's type.)

lua_tocfunction

lua_CFunction lua_tocfunction (lua_State *L, int index);

Converts a value at the given acceptable index to a C function. That value must be a
C function; otherwise, returns NULL.

lua_tointeger

lua_Integer lua_tointeger (lua_State *L, int index);

Converts the Lua value at the given acceptable index to the signed integral type lua_Integer.
The Lua value must be a number or a string convertible to a number (see §2.2.1); otherwise,
lua_tointeger returns 0.

If the number is not an integer, it is truncated in some non-specified way.

http://www.lua.org/manual/5.1/manual.html#lua_newstate
http://www.lua.org/manual/5.1/manual.html#lua_toboolean
http://www.lua.org/manual/5.1/manual.html#lua_isboolean
http://www.lua.org/manual/5.1/manual.html#lua_Integer
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#lua_tointeger

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 48 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, m]

[-0, +0, -]

[-0, +0, -]

[-0, +0, m]

lua_tolstring

const char *lua_tolstring (lua_State *L, int index, size_t *len);

Converts the Lua value at the given acceptable index to a C string. If len is not NULL, it also sets
*len with the string length. The Lua value must be a string or a number; otherwise, the function
returns NULL. If the value is a number, then lua_tolstring also changes the actual value in the
stack to a string. (This change confuses lua_next when lua_tolstring is applied to keys during
a table traversal.)

lua_tolstring returns a fully aligned pointer to a string inside the Lua state. This string always
has a zero ('\0') after its last character (as in C), but can contain other zeros in its body.
Because Lua has garbage collection, there is no guarantee that the pointer returned by
lua_tolstring will be valid after the corresponding value is removed from the stack.

lua_tonumber

lua_Number lua_tonumber (lua_State *L, int index);

Converts the Lua value at the given acceptable index to the C type lua_Number (see
lua_Number). The Lua value must be a number or a string convertible to a number (see §2.2.1);
otherwise, lua_tonumber returns 0.

lua_topointer

const void *lua_topointer (lua_State *L, int index);

Converts the value at the given acceptable index to a generic C pointer (void*). The value can
be a userdata, a table, a thread, or a function; otherwise, lua_topointer returns NULL. Different
objects will give different pointers. There is no way to convert the pointer back to its original
value.

Typically this function is used only for debug information.

lua_tostring

const char *lua_tostring (lua_State *L, int index);

Equivalent to lua_tolstring with len equal to NULL.

lua_tothread

http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_next
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_Number
http://www.lua.org/manual/5.1/manual.html#lua_Number
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#lua_tonumber
http://www.lua.org/manual/5.1/manual.html#lua_topointer
http://www.lua.org/manual/5.1/manual.html#lua_tolstring

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 49 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

lua_State *lua_tothread (lua_State *L, int index);

Converts the value at the given acceptable index to a Lua thread (represented as lua_State*).
This value must be a thread; otherwise, the function returns NULL.

lua_touserdata

void *lua_touserdata (lua_State *L, int index);

If the value at the given acceptable index is a full userdata, returns its block address. If the
value is a light userdata, returns its pointer. Otherwise, returns NULL.

lua_type

int lua_type (lua_State *L, int index);

Returns the type of the value in the given acceptable index, or LUA_TNONE for a non-valid index
(that is, an index to an "empty" stack position). The types returned by lua_type are coded by the
following constants defined in lua.h: LUA_TNIL, LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING,
LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, and LUA_TLIGHTUSERDATA.

lua_typename

const char *lua_typename (lua_State *L, int tp);

Returns the name of the type encoded by the value tp, which must be one the values returned
by lua_type.

lua_Writer

typedef int (*lua_Writer) (lua_State *L,
 const void* p,
 size_t sz,
 void* ud);

The type of the writer function used by lua_dump. Every time it produces another piece of chunk,
lua_dump calls the writer, passing along the buffer to be written (p), its size (sz), and the data
parameter supplied to lua_dump.

The writer returns an error code: 0 means no errors; any other value means an error and stops
lua_dump from calling the writer again.

lua_xmove

http://www.lua.org/manual/5.1/manual.html#lua_type
http://www.lua.org/manual/5.1/manual.html#lua_type
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_dump
http://www.lua.org/manual/5.1/manual.html#lua_dump

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 50 of 99http://www.lua.org/manual/5.1/manual.html

[-?, +?, -]

[-?, +?, -]

void lua_xmove (lua_State *from, lua_State *to, int n);

Exchange values between different threads of the same global state.

This function pops n values from the stack from, and pushes them onto the stack to.

lua_yield

int lua_yield (lua_State *L, int nresults);

Yields a coroutine.

This function should only be called as the return expression of a C function, as follows:

 return lua_yield (L, nresults);

When a C function calls lua_yield in that way, the running coroutine suspends its execution,
and the call to lua_resume that started this coroutine returns. The parameter nresults is the
number of values from the stack that are passed as results to lua_resume.

3.8 - The Debug Interface
Lua has no built-in debugging facilities. Instead, it offers a special interface by means of
functions and hooks. This interface allows the construction of different kinds of debuggers,
profilers, and other tools that need "inside information" from the interpreter.

lua_Debug

typedef struct lua_Debug {
 int event;
 const char *name; /* (n) */
 const char *namewhat; /* (n) */
 const char *what; /* (S) */
 const char *source; /* (S) */
 int currentline; /* (l) */
 int nups; /* (u) number of upvalues */
 int linedefined; /* (S) */
 int lastlinedefined; /* (S) */
 char short_src[LUA_IDSIZE]; /* (S) */
 /* private part */
 other fields
} lua_Debug;

A structure used to carry different pieces of information about an active function. lua_getstack
fills only the private part of this structure, for later use. To fill the other fields of lua_Debug with
useful information, call lua_getinfo.

http://www.lua.org/manual/5.1/manual.html#lua_yield
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#lua_resume
http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_Debug
http://www.lua.org/manual/5.1/manual.html#lua_getinfo

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 51 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +0, -]

[-0, +0, -]

[-(0|1), +(0|1|2), m]

The fields of lua_Debug have the following meaning:

source: If the function was defined in a string, then source is that string. If the function was
defined in a file, then source starts with a '@' followed by the file name.
short_src: a "printable" version of source, to be used in error messages.
linedefined: the line number where the definition of the function starts.
lastlinedefined: the line number where the definition of the function ends.
what: the string "Lua" if the function is a Lua function, "C" if it is a C function, "main" if it is
the main part of a chunk, and "tail" if it was a function that did a tail call. In the latter
case, Lua has no other information about the function.
currentline: the current line where the given function is executing. When no line
information is available, currentline is set to -1.
name: a reasonable name for the given function. Because functions in Lua are first-class
values, they do not have a fixed name: some functions can be the value of multiple global
variables, while others can be stored only in a table field. The lua_getinfo function checks
how the function was called to find a suitable name. If it cannot find a name, then name is
set to NULL.
namewhat: explains the name field. The value of namewhat can be "global", "local",
"method", "field", "upvalue", or "" (the empty string), according to how the function was
called. (Lua uses the empty string when no other option seems to apply.)
nups: the number of upvalues of the function.

lua_gethook

lua_Hook lua_gethook (lua_State *L);

Returns the current hook function.

lua_gethookcount

int lua_gethookcount (lua_State *L);

Returns the current hook count.

lua_gethookmask

int lua_gethookmask (lua_State *L);

Returns the current hook mask.

lua_getinfo

int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

http://www.lua.org/manual/5.1/manual.html#lua_Debug

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 52 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +(0|1), -]

Returns information about a specific function or function invocation.

To get information about a function invocation, the parameter ar must be a valid activation
record that was filled by a previous call to lua_getstack or given as argument to a hook (see
lua_Hook).

To get information about a function you push it onto the stack and start the what string with the
character '>'. (In that case, lua_getinfo pops the function in the top of the stack.) For instance,
to know in which line a function f was defined, you can write the following code:

 lua_Debug ar;
 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global 'f' */
 lua_getinfo(L, ">S", &ar);
 printf("%d\n", ar.linedefined);

Each character in the string what selects some fields of the structure ar to be filled or a value to
be pushed on the stack:

'n': fills in the field name and namewhat;
'S': fills in the fields source, short_src, linedefined, lastlinedefined, and what;
'l': fills in the field currentline;
'u': fills in the field nups;
'f': pushes onto the stack the function that is running at the given level;
'L': pushes onto the stack a table whose indices are the numbers of the lines that are valid
on the function. (A valid line is a line with some associated code, that is, a line where you
can put a break point. Non-valid lines include empty lines and comments.)

This function returns 0 on error (for instance, an invalid option in what).

lua_getlocal

const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);

Gets information about a local variable of a given activation record. The parameter ar must be a
valid activation record that was filled by a previous call to lua_getstack or given as argument to
a hook (see lua_Hook). The index n selects which local variable to inspect (1 is the first
parameter or active local variable, and so on, until the last active local variable). lua_getlocal
pushes the variable's value onto the stack and returns its name.

Variable names starting with '(' (open parentheses) represent internal variables (loop control
variables, temporaries, and C function locals).

Returns NULL (and pushes nothing) when the index is greater than the number of active local
variables.

lua_getstack

http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_Hook
http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_Hook
http://www.lua.org/manual/5.1/manual.html#lua_getlocal

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 53 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +(0|1), -]

[-0, +0, -]

int lua_getstack (lua_State *L, int level, lua_Debug *ar);

Get information about the interpreter runtime stack.

This function fills parts of a lua_Debug structure with an identification of the activation record of
the function executing at a given level. Level 0 is the current running function, whereas level
n+1 is the function that has called level n. When there are no errors, lua_getstack returns 1;
when called with a level greater than the stack depth, it returns 0.

lua_getupvalue

const char *lua_getupvalue (lua_State *L, int funcindex, int n);

Gets information about a closure's upvalue. (For Lua functions, upvalues are the external local
variables that the function uses, and that are consequently included in its closure.)
lua_getupvalue gets the index n of an upvalue, pushes the upvalue's value onto the stack, and
returns its name. funcindex points to the closure in the stack. (Upvalues have no particular
order, as they are active through the whole function. So, they are numbered in an arbitrary
order.)

Returns NULL (and pushes nothing) when the index is greater than the number of upvalues. For
C functions, this function uses the empty string "" as a name for all upvalues.

lua_Hook

typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);

Type for debugging hook functions.

Whenever a hook is called, its ar argument has its field event set to the specific event that
triggered the hook. Lua identifies these events with the following constants: LUA_HOOKCALL,
LUA_HOOKRET, LUA_HOOKTAILRET, LUA_HOOKLINE, and LUA_HOOKCOUNT. Moreover, for line events,
the field currentline is also set. To get the value of any other field in ar, the hook must call
lua_getinfo. For return events, event can be LUA_HOOKRET, the normal value, or
LUA_HOOKTAILRET. In the latter case, Lua is simulating a return from a function that did a tail call;
in this case, it is useless to call lua_getinfo.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls back Lua
to execute a function or a chunk, this execution occurs without any calls to hooks.

lua_sethook

int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);

Sets the debugging hook function.

http://www.lua.org/manual/5.1/manual.html#lua_Debug
http://www.lua.org/manual/5.1/manual.html#lua_getstack
http://www.lua.org/manual/5.1/manual.html#lua_getupvalue
http://www.lua.org/manual/5.1/manual.html#lua_getinfo
http://www.lua.org/manual/5.1/manual.html#lua_getinfo

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 54 of 99http://www.lua.org/manual/5.1/manual.html

[-(0|1), +0, -]

[-(0|1), +0, -]

Argument f is the hook function. mask specifies on which events the hook will be called: it is
formed by a bitwise or of the constants LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, and
LUA_MASKCOUNT. The count argument is only meaningful when the mask includes LUA_MASKCOUNT.
For each event, the hook is called as explained below:

The call hook: is called when the interpreter calls a function. The hook is called just after
Lua enters the new function, before the function gets its arguments.
The return hook: is called when the interpreter returns from a function. The hook is called
just before Lua leaves the function. You have no access to the values to be returned by
the function.
The line hook: is called when the interpreter is about to start the execution of a new line
of code, or when it jumps back in the code (even to the same line). (This event only
happens while Lua is executing a Lua function.)
The count hook: is called after the interpreter executes every count instructions. (This
event only happens while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.

lua_setlocal

const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);

Sets the value of a local variable of a given activation record. Parameters ar and n are as in
lua_getlocal (see lua_getlocal). lua_setlocal assigns the value at the top of the stack to the
variable and returns its name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index is greater than the number of active local
variables.

lua_setupvalue

const char *lua_setupvalue (lua_State *L, int funcindex, int n);

Sets the value of a closure's upvalue. It assigns the value at the top of the stack to the upvalue
and returns its name. It also pops the value from the stack. Parameters funcindex and n are as
in the lua_getupvalue (see lua_getupvalue).

Returns NULL (and pops nothing) when the index is greater than the number of upvalues.

4 - The Auxiliary Library
The auxiliary library provides several convenient functions to interface C with Lua. While the
basic API provides the primitive functions for all interactions between C and Lua, the auxiliary
library provides higher-level functions for some common tasks.

http://www.lua.org/manual/5.1/manual.html#lua_getlocal
http://www.lua.org/manual/5.1/manual.html#lua_getlocal
http://www.lua.org/manual/5.1/manual.html#lua_setlocal
http://www.lua.org/manual/5.1/manual.html#lua_getupvalue
http://www.lua.org/manual/5.1/manual.html#lua_getupvalue

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 55 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, m]

[-0, +0, m]

[-0, +0, m]

[-0, +0, m]

All functions from the auxiliary library are defined in header file lauxlib.h and have a prefix
luaL_.

All functions in the auxiliary library are built on top of the basic API, and so they provide nothing
that cannot be done with this API.

Several functions in the auxiliary library are used to check C function arguments. Their names
are always luaL_check* or luaL_opt*. All of these functions throw an error if the check is not
satisfied. Because the error message is formatted for arguments (e.g., "bad argument #1"), you
should not use these functions for other stack values.

4.1 - Functions and Types
Here we list all functions and types from the auxiliary library in alphabetical order.

luaL_addchar

void luaL_addchar (luaL_Buffer *B, char c);

Adds the character c to the buffer B (see luaL_Buffer).

luaL_addlstring

void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);

Adds the string pointed to by s with length l to the buffer B (see luaL_Buffer). The string may
contain embedded zeros.

luaL_addsize

void luaL_addsize (luaL_Buffer *B, size_t n);

Adds to the buffer B (see luaL_Buffer) a string of length n previously copied to the buffer area
(see luaL_prepbuffer).

luaL_addstring

void luaL_addstring (luaL_Buffer *B, const char *s);

Adds the zero-terminated string pointed to by s to the buffer B (see luaL_Buffer). The string
may not contain embedded zeros.

http://www.lua.org/manual/5.1/manual.html#luaL_Buffer
http://www.lua.org/manual/5.1/manual.html#luaL_Buffer
http://www.lua.org/manual/5.1/manual.html#luaL_Buffer
http://www.lua.org/manual/5.1/manual.html#luaL_prepbuffer
http://www.lua.org/manual/5.1/manual.html#luaL_Buffer

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 56 of 99http://www.lua.org/manual/5.1/manual.html

[-1, +0, m]

[-0, +0, v]

[-0, +0, v]

luaL_addvalue

void luaL_addvalue (luaL_Buffer *B);

Adds the value at the top of the stack to the buffer B (see luaL_Buffer). Pops the value.

This is the only function on string buffers that can (and must) be called with an extra element on
the stack, which is the value to be added to the buffer.

luaL_argcheck

void luaL_argcheck (lua_State *L,
 int cond,
 int narg,
 const char *extramsg);

Checks whether cond is true. If not, raises an error with the following message, where func is
retrieved from the call stack:

 bad argument #<narg> to <func> (<extramsg>)

luaL_argerror

int luaL_argerror (lua_State *L, int narg, const char *extramsg);

Raises an error with the following message, where func is retrieved from the call stack:

 bad argument #<narg> to <func> (<extramsg>)

This function never returns, but it is an idiom to use it in C functions as return
luaL_argerror(args).

luaL_Buffer

typedef struct luaL_Buffer luaL_Buffer;

Type for a string buffer.

A string buffer allows C code to build Lua strings piecemeal. Its pattern of use is as follows:

First you declare a variable b of type luaL_Buffer.
Then you initialize it with a call luaL_buffinit(L, &b).
Then you add string pieces to the buffer calling any of the luaL_add* functions.
You finish by calling luaL_pushresult(&b). This call leaves the final string on the top of
the stack.

http://www.lua.org/manual/5.1/manual.html#luaL_Buffer
http://www.lua.org/manual/5.1/manual.html#luaL_Buffer

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 57 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +(0|1), e]

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

During its normal operation, a string buffer uses a variable number of stack slots. So, while
using a buffer, you cannot assume that you know where the top of the stack is. You can use the
stack between successive calls to buffer operations as long as that use is balanced; that is,
when you call a buffer operation, the stack is at the same level it was immediately after the
previous buffer operation. (The only exception to this rule is luaL_addvalue.) After calling
luaL_pushresult the stack is back to its level when the buffer was initialized, plus the final string
on its top.

luaL_buffinit

void luaL_buffinit (lua_State *L, luaL_Buffer *B);

Initializes a buffer B. This function does not allocate any space; the buffer must be declared as a
variable (see luaL_Buffer).

luaL_callmeta

int luaL_callmeta (lua_State *L, int obj, const char *e);

Calls a metamethod.

If the object at index obj has a metatable and this metatable has a field e, this function calls this
field and passes the object as its only argument. In this case this function returns 1 and pushes
onto the stack the value returned by the call. If there is no metatable or no metamethod, this
function returns 0 (without pushing any value on the stack).

luaL_checkany

void luaL_checkany (lua_State *L, int narg);

Checks whether the function has an argument of any type (including nil) at position narg.

luaL_checkint

int luaL_checkint (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns this number cast to an int.

luaL_checkinteger

lua_Integer luaL_checkinteger (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns this number cast to a

http://www.lua.org/manual/5.1/manual.html#luaL_addvalue
http://www.lua.org/manual/5.1/manual.html#luaL_pushresult
http://www.lua.org/manual/5.1/manual.html#luaL_Buffer

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 58 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

lua_Integer.

luaL_checklong

long luaL_checklong (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns this number cast to a long.

luaL_checklstring

const char *luaL_checklstring (lua_State *L, int narg, size_t *l);

Checks whether the function argument narg is a string and returns this string; if l is not NULL fills
*l with the string's length.

This function uses lua_tolstring to get its result, so all conversions and caveats of that
function apply here.

luaL_checknumber

lua_Number luaL_checknumber (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns this number.

luaL_checkoption

int luaL_checkoption (lua_State *L,
 int narg,
 const char *def,
 const char *const lst[]);

Checks whether the function argument narg is a string and searches for this string in the array
lst (which must be NULL-terminated). Returns the index in the array where the string was
found. Raises an error if the argument is not a string or if the string cannot be found.

If def is not NULL, the function uses def as a default value when there is no argument narg or if
this argument is nil.

This is a useful function for mapping strings to C enums. (The usual convention in Lua libraries
is to use strings instead of numbers to select options.)

luaL_checkstack

http://www.lua.org/manual/5.1/manual.html#lua_Integer
http://www.lua.org/manual/5.1/manual.html#lua_tolstring

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 59 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

[-0, +?, m]

[-0, +?, m]

void luaL_checkstack (lua_State *L, int sz, const char *msg);

Grows the stack size to top + sz elements, raising an error if the stack cannot grow to that size.
msg is an additional text to go into the error message.

luaL_checkstring

const char *luaL_checkstring (lua_State *L, int narg);

Checks whether the function argument narg is a string and returns this string.

This function uses lua_tolstring to get its result, so all conversions and caveats of that
function apply here.

luaL_checktype

void luaL_checktype (lua_State *L, int narg, int t);

Checks whether the function argument narg has type t. See lua_type for the encoding of types
for t.

luaL_checkudata

void *luaL_checkudata (lua_State *L, int narg, const char *tname);

Checks whether the function argument narg is a userdata of the type tname (see
luaL_newmetatable).

luaL_dofile

int luaL_dofile (lua_State *L, const char *filename);

Loads and runs the given file. It is defined as the following macro:

 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))

It returns 0 if there are no errors or 1 in case of errors.

luaL_dostring

int luaL_dostring (lua_State *L, const char *str);

Loads and runs the given string. It is defined as the following macro:

http://www.lua.org/manual/5.1/manual.html#lua_tolstring
http://www.lua.org/manual/5.1/manual.html#lua_type
http://www.lua.org/manual/5.1/manual.html#luaL_newmetatable

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 60 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, v]

[-0, +(0|1), m]

[-0, +1, -]

[-0, +1, m]

[-0, +1, m]

 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))

It returns 0 if there are no errors or 1 in case of errors.

luaL_error

int luaL_error (lua_State *L, const char *fmt, ...);

Raises an error. The error message format is given by fmt plus any extra arguments, following
the same rules of lua_pushfstring. It also adds at the beginning of the message the file name
and the line number where the error occurred, if this information is available.

This function never returns, but it is an idiom to use it in C functions as return
luaL_error(args).

luaL_getmetafield

int luaL_getmetafield (lua_State *L, int obj, const char *e);

Pushes onto the stack the field e from the metatable of the object at index obj. If the object
does not have a metatable, or if the metatable does not have this field, returns 0 and pushes
nothing.

luaL_getmetatable

void luaL_getmetatable (lua_State *L, const char *tname);

Pushes onto the stack the metatable associated with name tname in the registry (see
luaL_newmetatable).

luaL_gsub

const char *luaL_gsub (lua_State *L,
 const char *s,
 const char *p,
 const char *r);

Creates a copy of string s by replacing any occurrence of the string p with the string r. Pushes
the resulting string on the stack and returns it.

luaL_loadbuffer

int luaL_loadbuffer (lua_State *L,

http://www.lua.org/manual/5.1/manual.html#lua_pushfstring
http://www.lua.org/manual/5.1/manual.html#luaL_newmetatable

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 61 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +1, m]

[-0, +1, m]

[-0, +1, m]

[-0, +1, m]

 const char *buff,
 size_t sz,
 const char *name);

Loads a buffer as a Lua chunk. This function uses lua_load to load the chunk in the buffer
pointed to by buff with size sz.

This function returns the same results as lua_load. name is the chunk name, used for debug
information and error messages.

luaL_loadfile

int luaL_loadfile (lua_State *L, const char *filename);

Loads a file as a Lua chunk. This function uses lua_load to load the chunk in the file named
filename. If filename is NULL, then it loads from the standard input. The first line in the file is
ignored if it starts with a #.

This function returns the same results as lua_load, but it has an extra error code LUA_ERRFILE if
it cannot open/read the file.

As lua_load, this function only loads the chunk; it does not run it.

luaL_loadstring

int luaL_loadstring (lua_State *L, const char *s);

Loads a string as a Lua chunk. This function uses lua_load to load the chunk in the zero-
terminated string s.

This function returns the same results as lua_load.

Also as lua_load, this function only loads the chunk; it does not run it.

luaL_newmetatable

int luaL_newmetatable (lua_State *L, const char *tname);

If the registry already has the key tname, returns 0. Otherwise, creates a new table to be used
as a metatable for userdata, adds it to the registry with key tname, and returns 1.

In both cases pushes onto the stack the final value associated with tname in the registry.

luaL_newstate

http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load
http://www.lua.org/manual/5.1/manual.html#lua_load

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 62 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, -]

[-0, +0, m]

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

[-0, +0, v]

lua_State *luaL_newstate (void);

Creates a new Lua state. It calls lua_newstate with an allocator based on the standard C
realloc function and then sets a panic function (see lua_atpanic) that prints an error message
to the standard error output in case of fatal errors.

Returns the new state, or NULL if there is a memory allocation error.

luaL_openlibs

void luaL_openlibs (lua_State *L);

Opens all standard Lua libraries into the given state.

luaL_optint

int luaL_optint (lua_State *L, int narg, int d);

If the function argument narg is a number, returns this number cast to an int. If this argument is
absent or is nil, returns d. Otherwise, raises an error.

luaL_optinteger

lua_Integer luaL_optinteger (lua_State *L,
 int narg,
 lua_Integer d);

If the function argument narg is a number, returns this number cast to a lua_Integer. If this
argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optlong

long luaL_optlong (lua_State *L, int narg, long d);

If the function argument narg is a number, returns this number cast to a long. If this argument is
absent or is nil, returns d. Otherwise, raises an error.

luaL_optlstring

const char *luaL_optlstring (lua_State *L,
 int narg,
 const char *d,
 size_t *l);

http://www.lua.org/manual/5.1/manual.html#lua_newstate
http://www.lua.org/manual/5.1/manual.html#lua_atpanic
http://www.lua.org/manual/5.1/manual.html#lua_Integer

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 63 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, v]

[-0, +0, v]

[-0, +0, -]

[-?, +1, m]

[-1, +0, m]

If the function argument narg is a string, returns this string. If this argument is absent or is nil,
returns d. Otherwise, raises an error.

If l is not NULL, fills the position *l with the results's length.

luaL_optnumber

lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);

If the function argument narg is a number, returns this number. If this argument is absent or is
nil, returns d. Otherwise, raises an error.

luaL_optstring

const char *luaL_optstring (lua_State *L,
 int narg,
 const char *d);

If the function argument narg is a string, returns this string. If this argument is absent or is nil,
returns d. Otherwise, raises an error.

luaL_prepbuffer

char *luaL_prepbuffer (luaL_Buffer *B);

Returns an address to a space of size LUAL_BUFFERSIZE where you can copy a string to be
added to buffer B (see luaL_Buffer). After copying the string into this space you must call
luaL_addsize with the size of the string to actually add it to the buffer.

luaL_pushresult

void luaL_pushresult (luaL_Buffer *B);

Finishes the use of buffer B leaving the final string on the top of the stack.

luaL_ref

int luaL_ref (lua_State *L, int t);

Creates and returns a reference, in the table at index t, for the object at the top of the stack
(and pops the object).

A reference is a unique integer key. As long as you do not manually add integer keys into table

http://www.lua.org/manual/5.1/manual.html#luaL_Buffer
http://www.lua.org/manual/5.1/manual.html#luaL_addsize

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 64 of 99http://www.lua.org/manual/5.1/manual.html

[-(0|1), +1, m]

[-0, +0, -]

t, luaL_ref ensures the uniqueness of the key it returns. You can retrieve an object referred by
reference r by calling lua_rawgeti(L, t, r). Function luaL_unref frees a reference and its
associated object.

If the object at the top of the stack is nil, luaL_ref returns the constant LUA_REFNIL. The
constant LUA_NOREF is guaranteed to be different from any reference returned by luaL_ref.

luaL_Reg

typedef struct luaL_Reg {
 const char *name;
 lua_CFunction func;
} luaL_Reg;

Type for arrays of functions to be registered by luaL_register. name is the function name and
func is a pointer to the function. Any array of luaL_Reg must end with an sentinel entry in which
both name and func are NULL.

luaL_register

void luaL_register (lua_State *L,
 const char *libname,
 const luaL_Reg *l);

Opens a library.

When called with libname equal to NULL, it simply registers all functions in the list l (see
luaL_Reg) into the table on the top of the stack.

When called with a non-null libname, luaL_register creates a new table t, sets it as the value
of the global variable libname, sets it as the value of package.loaded[libname], and registers
on it all functions in the list l. If there is a table in package.loaded[libname] or in variable
libname, reuses this table instead of creating a new one.

In any case the function leaves the table on the top of the stack.

luaL_typename

const char *luaL_typename (lua_State *L, int index);

Returns the name of the type of the value at the given index.

luaL_typerror

http://www.lua.org/manual/5.1/manual.html#luaL_ref
http://www.lua.org/manual/5.1/manual.html#luaL_unref
http://www.lua.org/manual/5.1/manual.html#luaL_ref
http://www.lua.org/manual/5.1/manual.html#luaL_ref
http://www.lua.org/manual/5.1/manual.html#luaL_register
http://www.lua.org/manual/5.1/manual.html#luaL_Reg
http://www.lua.org/manual/5.1/manual.html#luaL_Reg

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 65 of 99http://www.lua.org/manual/5.1/manual.html

[-0, +0, v]

[-0, +0, -]

[-0, +1, m]

int luaL_typerror (lua_State *L, int narg, const char *tname);

Generates an error with a message like the following:

 location: bad argument narg to 'func' (tname expected, got rt)

where location is produced by luaL_where, func is the name of the current function, and rt is
the type name of the actual argument.

luaL_unref

void luaL_unref (lua_State *L, int t, int ref);

Releases reference ref from the table at index t (see luaL_ref). The entry is removed from the
table, so that the referred object can be collected. The reference ref is also freed to be used
again.

If ref is LUA_NOREF or LUA_REFNIL, luaL_unref does nothing.

luaL_where

void luaL_where (lua_State *L, int lvl);

Pushes onto the stack a string identifying the current position of the control at level lvl in the
call stack. Typically this string has the following format:

 chunkname:currentline:

Level 0 is the running function, level 1 is the function that called the running function, etc.

This function is used to build a prefix for error messages.

5 - Standard Libraries
The standard Lua libraries provide useful functions that are implemented directly through the
C API. Some of these functions provide essential services to the language (e.g., type and
getmetatable); others provide access to "outside" services (e.g., I/O); and others could be
implemented in Lua itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., table.sort).

All libraries are implemented through the official C API and are provided as separate
C modules. Currently, Lua has the following standard libraries:

basic library, which includes the coroutine sub-library;
package library;

http://www.lua.org/manual/5.1/manual.html#luaL_where
http://www.lua.org/manual/5.1/manual.html#luaL_ref
http://www.lua.org/manual/5.1/manual.html#pdf-LUA_NOREF
http://www.lua.org/manual/5.1/manual.html#pdf-LUA_REFNIL
http://www.lua.org/manual/5.1/manual.html#luaL_unref
http://www.lua.org/manual/5.1/manual.html#pdf-type
http://www.lua.org/manual/5.1/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-table.sort

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 66 of 99http://www.lua.org/manual/5.1/manual.html

string manipulation;
table manipulation;
mathematical functions (sin, log, etc.);
input and output;
operating system facilities;
debug facilities.

Except for the basic and package libraries, each library provides all its functions as fields of a
global table or as methods of its objects.

To have access to these libraries, the C host program should call the luaL_openlibs function,
which opens all standard libraries. Alternatively, it can open them individually by calling
luaopen_base (for the basic library), luaopen_package (for the package library), luaopen_string
(for the string library), luaopen_table (for the table library), luaopen_math (for the mathematical
library), luaopen_io (for the I/O library), luaopen_os (for the Operating System library), and
luaopen_debug (for the debug library). These functions are declared in lualib.h and should not
be called directly: you must call them like any other Lua C function, e.g., by using lua_call.

5.1 - Basic Functions
The basic library provides some core functions to Lua. If you do not include this library in your
application, you should check carefully whether you need to provide implementations for some
of its facilities.

assert (v [, message])

Issues an error when the value of its argument v is false (i.e., nil or false); otherwise, returns all
its arguments. message is an error message; when absent, it defaults to "assertion failed!"

collectgarbage (opt [, arg])

This function is a generic interface to the garbage collector. It performs different functions
according to its first argument, opt:

"stop": stops the garbage collector.
"restart": restarts the garbage collector.
"collect": performs a full garbage-collection cycle.
"count": returns the total memory in use by Lua (in Kbytes).
"step": performs a garbage-collection step. The step "size" is controlled by arg (larger
values mean more steps) in a non-specified way. If you want to control the step size you
must experimentally tune the value of arg. Returns true if the step finished a collection
cycle.
"setpause": sets arg as the new value for the pause of the collector (see §2.10). Returns
the previous value for pause.
"setstepmul": sets arg as the new value for the step multiplier of the collector (see

http://www.lua.org/manual/5.1/manual.html#luaL_openlibs
http://www.lua.org/manual/5.1/manual.html#lua_call
http://www.lua.org/manual/5.1/manual.html#2.10

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 67 of 99http://www.lua.org/manual/5.1/manual.html

§2.10). Returns the previous value for step.

dofile (filename)

Opens the named file and executes its contents as a Lua chunk. When called without
arguments, dofile executes the contents of the standard input (stdin). Returns all values
returned by the chunk. In case of errors, dofile propagates the error to its caller (that is, dofile
does not run in protected mode).

error (message [, level])

Terminates the last protected function called and returns message as the error message.
Function error never returns.

Usually, error adds some information about the error position at the beginning of the message.
The level argument specifies how to get the error position. With level 1 (the default), the error
position is where the error function was called. Level 2 points the error to where the function
that called error was called; and so on. Passing a level 0 avoids the addition of error position
information to the message.

_G

A global variable (not a function) that holds the global environment (that is, _G._G = _G). Lua
itself does not use this variable; changing its value does not affect any environment, nor vice-
versa. (Use setfenv to change environments.)

getfenv ([f])

Returns the current environment in use by the function. f can be a Lua function or a number
that specifies the function at that stack level: Level 1 is the function calling getfenv. If the given
function is not a Lua function, or if f is 0, getfenv returns the global environment. The default for
f is 1.

getmetatable (object)

If object does not have a metatable, returns nil. Otherwise, if the object's metatable has a
"__metatable" field, returns the associated value. Otherwise, returns the metatable of the given
object.

ipairs (t)

http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 68 of 99http://www.lua.org/manual/5.1/manual.html

Returns three values: an iterator function, the table t, and 0, so that the construction

 for i,v in ipairs(t) do body end

will iterate over the pairs (1,t[1]), (2,t[2]), ···, up to the first integer key absent from the table.

load (func [, chunkname])

Loads a chunk using function func to get its pieces. Each call to func must return a string that
concatenates with previous results. A return of an empty string, nil, or no value signals the end
of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns nil plus the
error message. The environment of the returned function is the global environment.

chunkname is used as the chunk name for error messages and debug information. When absent,
it defaults to "=(load)".

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from the standard input, if no file name
is given.

loadstring (string [, chunkname])

Similar to load, but gets the chunk from the given string.

To load and run a given string, use the idiom

 assert(loadstring(s))()

When absent, chunkname defaults to the given string.

next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second
argument is an index in this table. next returns the next index of the table and its associated
value. When called with nil as its second argument, next returns an initial index and its
associated value. When called with the last index, or with nil in an empty table, next returns nil.
If the second argument is absent, then it is interpreted as nil. In particular, you can use next(t)
to check whether a table is empty.

The order in which the indices are enumerated is not specified, even for numeric indices. (To
traverse a table in numeric order, use a numerical for or the ipairs function.)

http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-ipairs

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 69 of 99http://www.lua.org/manual/5.1/manual.html

The behavior of next is undefined if, during the traversal, you assign any value to a non-existent
field in the table. You may however modify existing fields. In particular, you may clear existing
fields.

pairs (t)

Returns three values: the next function, the table t, and nil, so that the construction

 for k,v in pairs(t) do body end

will iterate over all key–value pairs of table t.

See function next for the caveats of modifying the table during its traversal.

pcall (f, arg1, ···)

Calls function f with the given arguments in protected mode. This means that any error inside f
is not propagated; instead, pcall catches the error and returns a status code. Its first result is
the status code (a boolean), which is true if the call succeeds without errors. In such case,
pcall also returns all results from the call, after this first result. In case of any error, pcall
returns false plus the error message.

print (···)

Receives any number of arguments, and prints their values to stdout, using the tostring
function to convert them to strings. print is not intended for formatted output, but only as a
quick way to show a value, typically for debugging. For formatted output, use string.format.

rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a boolean.

rawget (table, index)

Gets the real value of table[index], without invoking any metamethod. table must be a table;
index may be any value.

rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any metamethod. table must be

http://www.lua.org/manual/5.1/manual.html#pdf-next
http://www.lua.org/manual/5.1/manual.html#pdf-next
http://www.lua.org/manual/5.1/manual.html#pdf-tostring
http://www.lua.org/manual/5.1/manual.html#pdf-string.format

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 70 of 99http://www.lua.org/manual/5.1/manual.html

a table, index any value different from nil, and value any Lua value.

This function returns table.

select (index, ···)

If index is a number, returns all arguments after argument number index. Otherwise, index
must be the string "#", and select returns the total number of extra arguments it received.

setfenv (f, table)

Sets the environment to be used by the given function. f can be a Lua function or a number that
specifies the function at that stack level: Level 1 is the function calling setfenv. setfenv returns
the given function.

As a special case, when f is 0 setfenv changes the environment of the running thread. In this
case, setfenv returns no values.

setmetatable (table, metatable)

Sets the metatable for the given table. (You cannot change the metatable of other types from
Lua, only from C.) If metatable is nil, removes the metatable of the given table. If the original
metatable has a "__metatable" field, raises an error.

This function returns table.

tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a string
convertible to a number, then tonumber returns this number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer
between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either upper or lower case)
represents 10, 'B' represents 11, and so forth, with 'Z' representing 35. In base 10 (the default),
the number can have a decimal part, as well as an optional exponent part (see §2.1). In other
bases, only unsigned integers are accepted.

tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For
complete control of how numbers are converted, use string.format.

http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#pdf-string.format

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 71 of 99http://www.lua.org/manual/5.1/manual.html

If the metatable of e has a "__tostring" field, then tostring calls the corresponding value with
e as argument, and uses the result of the call as its result.

type (v)

Returns the type of its only argument, coded as a string. The possible results of this function
are "nil" (a string, not the value nil), "number", "string", "boolean", "table", "function",
"thread", and "userdata".

unpack (list [, i [, j]])

Returns the elements from the given table. This function is equivalent to

 return list[i], list[i+1], ···, list[j]

except that the above code can be written only for a fixed number of elements. By default, i is 1
and j is the length of the list, as defined by the length operator (see §2.5.5).

_VERSION

A global variable (not a function) that holds a string containing the current interpreter version.
The current contents of this variable is "Lua 5.1".

xpcall (f, err)

This function is similar to pcall, except that you can set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Any error inside f is
not propagated; instead, xpcall catches the error, calls the err function with the original error
object, and returns a status code. Its first result is the status code (a boolean), which is true if
the call succeeds without errors. In this case, xpcall also returns all results from the call, after
this first result. In case of any error, xpcall returns false plus the result from err.

5.2 - Coroutine Manipulation
The operations related to coroutines comprise a sub-library of the basic library and come inside
the table coroutine. See §2.11 for a general description of coroutines.

coroutine.create (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns this new coroutine, an

http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#pdf-pcall
http://www.lua.org/manual/5.1/manual.html#2.11

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 72 of 99http://www.lua.org/manual/5.1/manual.html

object with type "thread".

coroutine.resume (co [, val1, ···])

Starts or continues the execution of coroutine co. The first time you resume a coroutine, it starts
running its body. The values val1, ··· are passed as the arguments to the body function. If the
coroutine has yielded, resume restarts it; the values val1, ··· are passed as the results from the
yield.

If the coroutine runs without any errors, resume returns true plus any values passed to yield (if
the coroutine yields) or any values returned by the body function (if the coroutine terminates). If
there is any error, resume returns false plus the error message.

coroutine.running ()

Returns the running coroutine, or nil when called by the main thread.

coroutine.status (co)

Returns the status of coroutine co, as a string: "running", if the coroutine is running (that is, it
called status); "suspended", if the coroutine is suspended in a call to yield, or if it has not
started running yet; "normal" if the coroutine is active but not running (that is, it has resumed
another coroutine); and "dead" if the coroutine has finished its body function, or if it has stopped
with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns a function that
resumes the coroutine each time it is called. Any arguments passed to the function behave as
the extra arguments to resume. Returns the same values returned by resume, except the first
boolean. In case of error, propagates the error.

coroutine.yield (···)

Suspends the execution of the calling coroutine. The coroutine cannot be running a C function,
a metamethod, or an iterator. Any arguments to yield are passed as extra results to resume.

5.3 - Modules
The package library provides basic facilities for loading and building modules in Lua. It exports
two of its functions directly in the global environment: require and module. Everything else is

http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-module

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 73 of 99http://www.lua.org/manual/5.1/manual.html

exported in a table package.

module (name [, ···])

Creates a module. If there is a table in package.loaded[name], this table is the module.
Otherwise, if there is a global table t with the given name, this table is the module. Otherwise
creates a new table t and sets it as the value of the global name and the value of
package.loaded[name]. This function also initializes t._NAME with the given name, t._M with the
module (t itself), and t._PACKAGE with the package name (the full module name minus last
component; see below). Finally, module sets t as the new environment of the current function
and the new value of package.loaded[name], so that require returns t.

If name is a compound name (that is, one with components separated by dots), module creates
(or reuses, if they already exist) tables for each component. For instance, if name is a.b.c, then
module stores the module table in field c of field b of global a.

This function can receive optional options after the module name, where each option is a
function to be applied over the module.

require (modname)

Loads the given module. The function starts by looking into the package.loaded table to
determine whether modname is already loaded. If it is, then require returns the value stored at
package.loaded[modname]. Otherwise, it tries to find a loader for the module.

To find a loader, require is guided by the package.loaders array. By changing this array, we
can change how require looks for a module. The following explanation is based on the default
configuration for package.loaders.

First require queries package.preload[modname]. If it has a value, this value (which should be a
function) is the loader. Otherwise require searches for a Lua loader using the path stored in
package.path. If that also fails, it searches for a C loader using the path stored in
package.cpath. If that also fails, it tries an all-in-one loader (see package.loaders).

Once a loader is found, require calls the loader with a single argument, modname. If the loader
returns any value, require assigns the returned value to package.loaded[modname]. If the loader
returns no value and has not assigned any value to package.loaded[modname], then require
assigns true to this entry. In any case, require returns the final value of
package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader for the module,
then require signals an error.

package.cpath

http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaded
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-package.cpath
http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 74 of 99http://www.lua.org/manual/5.1/manual.html

The path used by require to search for a C loader.

Lua initializes the C path package.cpath in the same way it initializes the Lua path
package.path, using the environment variable LUA_CPATH or a default path defined in luaconf.h.

package.loaded

A table used by require to control which modules are already loaded. When you require a
module modname and package.loaded[modname] is not false, require simply returns the value
stored there.

package.loaders

A table used by require to control how to load modules.

Each entry in this table is a searcher function. When looking for a module, require calls each of
these searchers in ascending order, with the module name (the argument given to require) as
its sole parameter. The function can return another function (the module loader) or a string
explaining why it did not find that module (or nil if it has nothing to say). Lua initializes this table
with four functions.

The first searcher simply looks for a loader in the package.preload table.

The second searcher looks for a loader as a Lua library, using the path stored at package.path.
A path is a sequence of templates separated by semicolons. For each template, the searcher
will change each interrogation mark in the template by filename, which is the module name with
each dot replaced by a "directory separator" (such as "/" in Unix); then it will try to open the
resulting file name. So, for instance, if the Lua path is the string

 "./?.lua;./?.lc;/usr/local/?/init.lua"

the search for a Lua file for module foo will try to open the files ./foo.lua, ./foo.lc, and
/usr/local/foo/init.lua, in that order.

The third searcher looks for a loader as a C library, using the path given by the variable
package.cpath. For instance, if the C path is the string

 "./?.so;./?.dll;/usr/local/?/init.so"

the searcher for module foo will try to open the files ./foo.so, ./foo.dll, and
/usr/local/foo/init.so, in that order. Once it finds a C library, this searcher first uses a
dynamic link facility to link the application with the library. Then it tries to find a C function inside
the library to be used as the loader. The name of this C function is the string "luaopen_"
concatenated with a copy of the module name where each dot is replaced by an underscore.
Moreover, if the module name has a hyphen, its prefix up to (and including) the first hyphen is
removed. For instance, if the module name is a.v1-b.c, the function name will be luaopen_b_c.

http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-package.cpath
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-package.preload
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-package.cpath

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 75 of 99http://www.lua.org/manual/5.1/manual.html

The fourth searcher tries an all-in-one loader. It searches the C path for a library for the root
name of the given module. For instance, when requiring a.b.c, it will search for a C library for a.
If found, it looks into it for an open function for the submodule; in our example, that would be
luaopen_a_b_c. With this facility, a package can pack several C submodules into one single
library, with each submodule keeping its original open function.

package.loadlib (libname, funcname)

Dynamically links the host program with the C library libname. Inside this library, looks for a
function funcname and returns this function as a C function. (So, funcname must follow the
protocol (see lua_CFunction)).

This is a low-level function. It completely bypasses the package and module system. Unlike
require, it does not perform any path searching and does not automatically adds extensions.
libname must be the complete file name of the C library, including if necessary a path and
extension. funcname must be the exact name exported by the C library (which may depend on
the C compiler and linker used).

This function is not supported by ANSI C. As such, it is only available on some platforms
(Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that support the dlfcn
standard).

package.path

The path used by require to search for a Lua loader.

At start-up, Lua initializes this variable with the value of the environment variable LUA_PATH or
with a default path defined in luaconf.h, if the environment variable is not defined. Any ";;" in
the value of the environment variable is replaced by the default path.

package.preload

A table to store loaders for specific modules (see require).

package.seeall (module)

Sets a metatable for module with its __index field referring to the global environment, so that this
module inherits values from the global environment. To be used as an option to function module.

5.4 - String Manipulation
This library provides generic functions for string manipulation, such as finding and extracting

http://www.lua.org/manual/5.1/manual.html#lua_CFunction
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-module

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 76 of 99http://www.lua.org/manual/5.1/manual.html

substrings, and pattern matching. When indexing a string in Lua, the first character is at
position 1 (not at 0, as in C). Indices are allowed to be negative and are interpreted as indexing
backwards, from the end of the string. Thus, the last character is at position -1, and so on.

The string library provides all its functions inside the table string. It also sets a metatable for
strings where the __index field points to the string table. Therefore, you can use the string
functions in object-oriented style. For instance, string.byte(s, i) can be written as s:byte(i).

The string library assumes one-byte character encodings.

string.byte (s [, i [, j]])

Returns the internal numerical codes of the characters s[i], s[i+1], ···, s[j]. The default value
for i is 1; the default value for j is i.

Note that numerical codes are not necessarily portable across platforms.

string.char (···)

Receives zero or more integers. Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal to its corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

string.dump (function)

Returns a string containing a binary representation of the given function, so that a later
loadstring on this string returns a copy of the function. function must be a Lua function without
upvalues.

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns the
indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional
numerical argument init specifies where to start the search; its default value is 1 and can be
negative. A value of true as a fourth, optional argument plain turns off the pattern matching
facilities, so the function does a plain "find substring" operation, with no characters in pattern
being considered "magic". Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also returned,
after the two indices.

http://www.lua.org/manual/5.1/manual.html#pdf-loadstring

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 77 of 99http://www.lua.org/manual/5.1/manual.html

string.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the description given
in its first argument (which must be a string). The format string follows the same rules as the
printf family of standard C functions. The only differences are that the options/modifiers *, l, L,
n, p, and h are not supported and that there is an extra option, q. The q option formats a string in
a form suitable to be safely read back by the Lua interpreter: the string is written between
double quotes, and all double quotes, newlines, embedded zeros, and backslashes in the string
are correctly escaped when written. For instance, the call

 string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

 "a string with \"quotes\" and \
 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s
expect a string.

This function does not accept string values containing embedded zeros, except as arguments
to the q option.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures from pattern
over string s. If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

 s = "hello world from Lua"
 for w in string.gmatch(s, "%a+") do
 print(w)
 end

will iterate over all the words from string s, printing one per line. The next example collects all
pairs key=value from the given string into a table:

 t = {}
 s = "from=world, to=Lua"
 for k, v in string.gmatch(s, "(%w+)=(%w+)") do
 t[k] = v
 end

For this function, a '^' at the start of a pattern does not work as an anchor, as this would prevent
the iteration.

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 78 of 99http://www.lua.org/manual/5.1/manual.html

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have been
replaced by a replacement string specified by repl, which can be a string, a table, or a function.
gsub also returns, as its second value, the total number of matches that occurred.

If repl is a string, then its value is used for replacement. The character % works as an escape
character: any sequence in repl of the form %n, with n between 1 and 9, stands for the value of
the n-th captured substring (see below). The sequence %0 stands for the whole match. The
sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key; if
the pattern specifies no captures, then the whole match is used as the key.

If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order; if the pattern specifies no captures, then the whole
match is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a number, then it is
used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that
is, the original match is kept in the string).

Here are some examples:

 x = string.gsub("hello world", "(%w+)", "%1 %1")
 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0", 1)
 --> x="hello hello world"

 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
 return loadstring(s)()
 end)
 --> x="4+5 = 9"

 local t = {name="lua", version="5.1"}
 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
 --> x="lua-5.1.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, so "a\000bc\000" has length 5.

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 79 of 99http://www.lua.org/manual/5.1/manual.html

string.lower (s)

Receives a string and returns a copy of this string with all uppercase letters changed to
lowercase. All other characters are left unchanged. The definition of what an uppercase letter is
depends on the current locale.

string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns the captures
from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match
is returned. A third, optional numerical argument init specifies where to start the search; its
default value is 1 and can be negative.

string.rep (s, n)

Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)

Returns a string that is the string s reversed.

string.sub (s, i [, j])

Returns the substring of s that starts at i and continues until j; i and j can be negative. If j is
absent, then it is assumed to be equal to -1 (which is the same as the string length). In
particular, the call string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i)
returns a suffix of s with length i.

string.upper (s)

Receives a string and returns a copy of this string with all lowercase letters changed to
uppercase. All other characters are left unchanged. The definition of what a lowercase letter is
depends on the current locale.

5.4.1 - Patterns

Character Class:

A character class is used to represent a set of characters. The following combinations are

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 80 of 99http://www.lua.org/manual/5.1/manual.html

allowed in describing a character class:

x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the character x
itself.
.: (a dot) represents all characters.
%a: represents all letters.
%c: represents all control characters.
%d: represents all digits.
%l: represents all lowercase letters.
%p: represents all punctuation characters.
%s: represents all space characters.
%u: represents all uppercase letters.
%w: represents all alphanumeric characters.
%x: represents all hexadecimal digits.
%z: represents the character with representation 0.
%x: (where x is any non-alphanumeric character) represents the character x. This is the
standard way to escape the magic characters. Any punctuation character (even the non
magic) can be preceded by a '%' when used to represent itself in a pattern.
[set]: represents the class which is the union of all characters in set. A range of
characters can be specified by separating the end characters of the range with a '-'. All
classes %x described above can also be used as components in set. All other characters
in set represent themselves. For example, [%w_] (or [_%w]) represents all alphanumeric
characters plus the underscore, [0-7] represents the octal digits, and [0-7%l%-]
represents the octal digits plus the lowercase letters plus the '-' character.

The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z]
or [a-%%] have no meaning.

[^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter
represents the complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In
particular, the class [a-z] may not be equivalent to %l.

Pattern Item:

A pattern item can be

a single character class, which matches any single character in the class;
a single character class followed by '*', which matches 0 or more repetitions of characters
in the class. These repetition items will always match the longest possible sequence;
a single character class followed by '+', which matches 1 or more repetitions of characters
in the class. These repetition items will always match the longest possible sequence;
a single character class followed by '-', which also matches 0 or more repetitions of
characters in the class. Unlike '*', these repetition items will always match the shortest
possible sequence;

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 81 of 99http://www.lua.org/manual/5.1/manual.html

a single character class followed by '?', which matches 0 or 1 occurrence of a character in
the class;
%n, for n between 1 and 9; such item matches a substring equal to the n-th captured string
(see below);
%bxy, where x and y are two distinct characters; such item matches strings that start
with x, end with y, and where the x and y are balanced. This means that, if one reads the
string from left to right, counting +1 for an x and -1 for a y, the ending y is the first y where
the count reaches 0. For instance, the item %b() matches expressions with balanced
parentheses.

Pattern:

A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors the match at
the beginning of the subject string. A '$' at the end of a pattern anchors the match at the end of
the subject string. At other positions, '^' and '$' have no special meaning and represent
themselves.

Captures:

A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a
match succeeds, the substrings of the subject string that match captures are stored (captured)
for future use. Captures are numbered according to their left parentheses. For instance, in the
pattern "(a*(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the first
capture (and therefore has number 1); the character matching "." is captured with number 2,
and the part matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For
instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures:
3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

5.5 - Table Manipulation
This library provides generic functions for table manipulation. It provides all its functions inside
the table table.

Most functions in the table library assume that the table represents an array or a list. For these
functions, when we talk about the "length" of a table we mean the result of the length operator.

table.concat (table [, sep [, i [, j]]])

Given an array where all elements are strings or numbers, returns table[i]..sep..table[i+1]
··· sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the
default for j is the length of the table. If i is greater than j, returns the empty string.

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 82 of 99http://www.lua.org/manual/5.1/manual.html

table.insert (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open space, if
necessary. The default value for pos is n+1, where n is the length of the table (see §2.5.5), so
that a call table.insert(t,x) inserts x at the end of table t.

table.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table has no
positive numerical indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to close the
space, if necessary. Returns the value of the removed element. The default value for pos is n,
where n is the length of the table, so that a call table.remove(t) removes the last element of
table t.

table.sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length
of the table. If comp is given, then it must be a function that receives two table elements, and
returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true
after the sort). If comp is not given, then the standard Lua operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may have
their relative positions changed by the sort.

5.6 - Mathematical Functions
This library is an interface to the standard C math library. It provides all its functions inside the
table math.

math.abs (x)

Returns the absolute value of x.

math.acos (x)

http://www.lua.org/manual/5.1/manual.html#2.5.5

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 83 of 99http://www.lua.org/manual/5.1/manual.html

Returns the arc cosine of x (in radians).

math.asin (x)

Returns the arc sine of x (in radians).

math.atan (x)

Returns the arc tangent of x (in radians).

math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the
quadrant of the result. (It also handles correctly the case of x being zero.)

math.ceil (x)

Returns the smallest integer larger than or equal to x.

math.cos (x)

Returns the cosine of x (assumed to be in radians).

math.cosh (x)

Returns the hyperbolic cosine of x.

math.deg (x)

Returns the angle x (given in radians) in degrees.

math.exp (x)

Returns the value ex.

math.floor (x)

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 84 of 99http://www.lua.org/manual/5.1/manual.html

Returns the largest integer smaller than or equal to x.

math.fmod (x, y)

Returns the remainder of the division of x by y that rounds the quotient towards zero.

math.frexp (x)

Returns m and e such that x = m2e, e is an integer and the absolute value of m is in the range
[0.5, 1) (or zero when x is zero).

math.huge

The value HUGE_VAL, a value larger than or equal to any other numerical value.

math.ldexp (m, e)

Returns m2e (e should be an integer).

math.log (x)

Returns the natural logarithm of x.

math.log10 (x)

Returns the base-10 logarithm of x.

math.max (x, ···)

Returns the maximum value among its arguments.

math.min (x, ···)

Returns the minimum value among its arguments.

math.modf (x)

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 85 of 99http://www.lua.org/manual/5.1/manual.html

Returns two numbers, the integral part of x and the fractional part of x.

math.pi

The value of pi.

math.pow (x, y)

Returns xy. (You can also use the expression x^y to compute this value.)

math.rad (x)

Returns the angle x (given in degrees) in radians.

math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand provided by
ANSI C. (No guarantees can be given for its statistical properties.)

When called without arguments, returns a uniform pseudo-random real number in the range
[0,1). When called with an integer number m, math.random returns a uniform pseudo-random
integer in the range [1, m]. When called with two integer numbers m and n, math.random returns a
uniform pseudo-random integer in the range [m, n].

math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences
of numbers.

math.sin (x)

Returns the sine of x (assumed to be in radians).

math.sinh (x)

Returns the hyperbolic sine of x.

math.sqrt (x)

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 86 of 99http://www.lua.org/manual/5.1/manual.html

Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

math.tan (x)

Returns the tangent of x (assumed to be in radians).

math.tanh (x)

Returns the hyperbolic tangent of x.

5.7 - Input and Output Facilities
The I/O library provides two different styles for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default output file, and
all input/output operations are over these default files. The second style uses explicit file
descriptors.

When using implicit file descriptors, all operations are supplied by table io. When using explicit
file descriptors, the operation io.open returns a file descriptor and then all operations are
supplied as methods of the file descriptor.

The table io also provides three predefined file descriptors with their usual meanings from C:
io.stdin, io.stdout, and io.stderr. The I/O library never closes these files.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a
second result and a system-dependent error code as a third result) and some value different
from nil on success.

io.close ([file])

Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()

Equivalent to file:flush over the default output file.

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its handle as the
default input file. When called with a file handle, it simply sets this file handle as the default input

http://www.lua.org/manual/5.1/manual.html#pdf-io.open

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 87 of 99http://www.lua.org/manual/5.1/manual.html

file. When called without parameters, it returns the current default input file.

In case of errors this function raises the error, instead of returning an error code.

io.lines ([filename])

Opens the given file name in read mode and returns an iterator function that, each time it is
called, returns a new line from the file. Therefore, the construction

 for line in io.lines(filename) do body end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns nil
(to finish the loop) and automatically closes the file.

The call io.lines() (with no file name) is equivalent to io.input():lines(); that is, it iterates
over the lines of the default input file. In this case it does not close the file when the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new file handle,
or, in case of errors, nil plus an error message.

The mode string can be any of the following:

"r": read mode (the default);
"w": write mode;
"a": append mode;
"r+": update mode, all previous data is preserved;
"w+": update mode, all previous data is erased;
"a+": append update mode, previous data is preserved, writing is only allowed at the end
of file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the file
in binary mode. This string is exactly what is used in the standard C function fopen.

io.output ([file])

Similar to io.input, but operates over the default output file.

io.popen (prog [, mode])

Starts program prog in a separated process and returns a file handle that you can use to read
data from this program (if mode is "r", the default) or to write data to this program (if mode is "w").

http://www.lua.org/manual/5.1/manual.html#pdf-io.input

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 88 of 99http://www.lua.org/manual/5.1/manual.html

This function is system dependent and is not available on all platforms.

io.read (···)

Equivalent to io.input():read.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is automatically
removed when the program ends.

io.type (obj)

Checks whether obj is a valid file handle. Returns the string "file" if obj is an open file handle,
"closed file" if obj is a closed file handle, or nil if obj is not a file handle.

io.write (···)

Equivalent to io.output():write.

file:close ()

Closes file. Note that files are automatically closed when their handles are garbage collected,
but that takes an unpredictable amount of time to happen.

file:flush ()

Saves any written data to file.

file:lines ()

Returns an iterator function that, each time it is called, returns a new line from the file.
Therefore, the construction

 for line in file:lines() do body end

will iterate over all lines of the file. (Unlike io.lines, this function does not close the file when
the loop ends.)

http://www.lua.org/manual/5.1/manual.html#pdf-io.lines

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 89 of 99http://www.lua.org/manual/5.1/manual.html

file:read (···)

Reads the file file, according to the given formats, which specify what to read. For each
format, the function returns a string (or a number) with the characters read, or nil if it cannot
read data with the specified format. When called without formats, it uses a default format that
reads the entire next line (see below).

The available formats are

"*n": reads a number; this is the only format that returns a number instead of a string.
"*a": reads the whole file, starting at the current position. On end of file, it returns the
empty string.
"*l": reads the next line (skipping the end of line), returning nil on end of file. This is the
default format.
number: reads a string with up to this number of characters, returning nil on end of file. If
number is zero, it reads nothing and returns an empty string, or nil on end of file.

file:seek ([whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the position given by
offset plus a base specified by the string whence, as follows:

"set": base is position 0 (beginning of the file);
"cur": base is current position;
"end": base is end of file;

In case of success, function seek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call file:seek()
returns the current file position, without changing it; the call file:seek("set") sets the position
to the beginning of the file (and returns 0); and the call file:seek("end") sets the position to
the end of the file, and returns its size.

file:setvbuf (mode [, size])

Sets the buffering mode for an output file. There are three available modes:

"no": no buffering; the result of any output operation appears immediately.
"full": full buffering; output operation is performed only when the buffer is full (or when
you explicitly flush the file (see io.flush)).
"line": line buffering; output is buffered until a newline is output or there is any input from
some special files (such as a terminal device).

For the last two cases, size specifies the size of the buffer, in bytes. The default is an

http://www.lua.org/manual/5.1/manual.html#pdf-io.flush

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 90 of 99http://www.lua.org/manual/5.1/manual.html

appropriate size.

file:write (···)

Writes the value of each of its arguments to the file. The arguments must be strings or
numbers. To write other values, use tostring or string.format before write.

5.8 - Operating System Facilities
This library is implemented through table os.

os.clock ()

Returns an approximation of the amount in seconds of CPU time used by the program.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the given string
format.

If the time argument is present, this is the time to be formatted (see the os.time function for a
description of this value). Otherwise, date formats the current time.

If format starts with '!', then the date is formatted in Coordinated Universal Time. After this
optional character, if format is the string "*t", then date returns a table with the following fields:
year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday
(weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).

If format is not "*t", then date returns the date as a string, formatted according to the same
rules as the C function strftime.

When called without arguments, date returns a reasonable date and time representation that
depends on the host system and on the current locale (that is, os.date() is equivalent to
os.date("%c")).

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other
systems, this value is exactly t2-t1.

os.execute ([command])

http://www.lua.org/manual/5.1/manual.html#pdf-tostring
http://www.lua.org/manual/5.1/manual.html#pdf-string.format
http://www.lua.org/manual/5.1/manual.html#pdf-os.time

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 91 of 99http://www.lua.org/manual/5.1/manual.html

This function is equivalent to the C function system. It passes command to be executed by an
operating system shell. It returns a status code, which is system-dependent. If command is
absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])

Calls the C function exit, with an optional code, to terminate the host program. The default
value for code is the success code.

os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not
defined.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be removed. If
this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a
string describing the error.

os.setlocale (locale [, category])

Sets the current locale of the program. locale is a string specifying a locale; category is an
optional string describing which category to change: "all", "collate", "ctype", "monetary",
"numeric", or "time"; the default category is "all". The function returns the name of the new
locale, or nil if the request cannot be honored.

If locale is the empty string, the current locale is set to an implementation-defined native locale.
If locale is the string "C", the current locale is set to the standard C locale.

When called with nil as the first argument, this function only returns the name of the current
locale for the given category.

os.time ([table])

Returns the current time when called without arguments, or a time representing the date and

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 92 of 99http://www.lua.org/manual/5.1/manual.html

time specified by the given table. This table must have fields year, month, and day, and may
have fields hour, min, sec, and isdst (for a description of these fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX, Windows,
and some other systems, this number counts the number of seconds since some given start
time (the "epoch"). In other systems, the meaning is not specified, and the number returned by
time can be used only as an argument to date and difftime.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must be explicitly
opened before its use and explicitly removed when no longer needed.

On some systems (POSIX), this function also creates a file with that name, to avoid security
risks. (Someone else might create the file with wrong permissions in the time between getting
the name and creating the file.) You still have to open the file to use it and to remove it (even if
you do not use it).

When possible, you may prefer to use io.tmpfile, which automatically removes the file when
the program ends.

5.9 - The Debug Library
This library provides the functionality of the debug interface to Lua programs. You should exert
care when using this library. The functions provided here should be used exclusively for
debugging and similar tasks, such as profiling. Please resist the temptation to use them as a
usual programming tool: they can be very slow. Moreover, several of these functions violate
some assumptions about Lua code (e.g., that variables local to a function cannot be accessed
from outside or that userdata metatables cannot be changed by Lua code) and therefore can
compromise otherwise secure code.

All functions in this library are provided inside the debug table. All functions that operate over a
thread have an optional first argument which is the thread to operate over. The default is always
the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters. Using simple
commands and other debug facilities, the user can inspect global and local variables, change
their values, evaluate expressions, and so on. A line containing only the word cont finishes this
function, so that the caller continues its execution.

Note that commands for debug.debug are not lexically nested within any function, and so have
no direct access to local variables.

http://www.lua.org/manual/5.1/manual.html#pdf-os.date
http://www.lua.org/manual/5.1/manual.html#pdf-io.tmpfile

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 93 of 99http://www.lua.org/manual/5.1/manual.html

debug.getfenv (o)

Returns the environment of object o.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook function, the
current hook mask, and the current hook count (as set by the debug.sethook function).

debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can give the function directly, or you can
give a number as the value of function, which means the function running at level function of
the call stack of the given thread: level 0 is the current function (getinfo itself); level 1 is the
function that called getinfo; and so on. If function is a number larger than the number of active
functions, then getinfo returns nil.

The returned table can contain all the fields returned by lua_getinfo, with the string what
describing which fields to fill in. The default for what is to get all information available, except the
table of valid lines. If present, the option 'f' adds a field named func with the function itself. If
present, the option 'L' adds a field named activelines with the table of valid lines.

For instance, the expression debug.getinfo(1,"n").name returns a table with a name for the
current function, if a reasonable name can be found, and the expression debug.getinfo(print)
returns a table with all available information about the print function.

debug.getlocal ([thread,] level, local)

This function returns the name and the value of the local variable with index local of the
function at level level of the stack. (The first parameter or local variable has index 1, and so on,
until the last active local variable.) The function returns nil if there is no local variable with the
given index, and raises an error when called with a level out of range. (You can call
debug.getinfo to check whether the level is valid.)

Variable names starting with '(' (open parentheses) represent internal variables (loop control
variables, temporaries, and C function locals).

debug.getmetatable (object)

Returns the metatable of the given object or nil if it does not have a metatable.

http://www.lua.org/manual/5.1/manual.html#pdf-debug.sethook
http://www.lua.org/manual/5.1/manual.html#lua_getinfo
http://www.lua.org/manual/5.1/manual.html#pdf-print
http://www.lua.org/manual/5.1/manual.html#pdf-debug.getinfo

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 94 of 99http://www.lua.org/manual/5.1/manual.html

debug.getregistry ()

Returns the registry table (see §3.5).

debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the function func.
The function returns nil if there is no upvalue with the given index.

debug.setfenv (object, table)

Sets the environment of the given object to the given table. Returns object.

debug.sethook ([thread,] hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe when the
hook will be called. The string mask may have the following characters, with the given meaning:

"c": the hook is called every time Lua calls a function;
"r": the hook is called every time Lua returns from a function;
"l": the hook is called every time Lua enters a new line of code.

With a count different from zero, the hook is called after every count instructions.

When called without arguments, debug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has triggered its
call: "call", "return" (or "tail return", when simulating a return from a tail call), "line", and
"count". For line events, the hook also gets the new line number as its second parameter.
Inside a hook, you can call getinfo with level 2 to get more information about the running
function (level 0 is the getinfo function, and level 1 is the hook function), unless the event is
"tail return". In this case, Lua is only simulating the return, and a call to getinfo will return
invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the function at
level level of the stack. The function returns nil if there is no local variable with the given index,
and raises an error when called with a level out of range. (You can call getinfo to check
whether the level is valid.) Otherwise, it returns the name of the local variable.

debug.setmetatable (object, table)

http://www.lua.org/manual/5.1/manual.html#3.5
http://www.lua.org/manual/5.1/manual.html#pdf-debug.sethook

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 95 of 99http://www.lua.org/manual/5.1/manual.html

Sets the metatable for the given object to the given table (which can be nil).

debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with index up of the function func. The
function returns nil if there is no upvalue with the given index. Otherwise, it returns the name of
the upvalue.

debug.traceback ([thread,] [message] [, level])

Returns a string with a traceback of the call stack. An optional message string is appended at the
beginning of the traceback. An optional level number tells at which level to start the traceback
(default is 1, the function calling traceback).

6 - Lua Stand-alone
Although Lua has been designed as an extension language, to be embedded in a host
C program, it is also frequently used as a stand-alone language. An interpreter for Lua as a
stand-alone language, called simply lua, is provided with the standard distribution. The stand-
alone interpreter includes all standard libraries, including the debug library. Its usage is:

 lua [options] [script [args]]

The options are:

-e stat: executes string stat;
-l mod: "requires" mod;
-i: enters interactive mode after running script;
-v: prints version information;
--: stops handling options;
-: executes stdin as a file and stops handling options.

After handling its options, lua runs the given script, passing to it the given args as string
arguments. When called without arguments, lua behaves as lua -v -i when the standard input
(stdin) is a terminal, and as lua - otherwise.

Before running any argument, the interpreter checks for an environment variable LUA_INIT. If its
format is @filename, then lua executes the file. Otherwise, lua executes the string itself.

All options are handled in order, except -i. For instance, an invocation like

 $ lua -e'a=1' -e 'print(a)' script.lua

will first set a to 1, then print the value of a (which is '1'), and finally run the file script.lua with

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 96 of 99http://www.lua.org/manual/5.1/manual.html

no arguments. (Here $ is the shell prompt. Your prompt may be different.)

Before starting to run the script, lua collects all arguments in the command line in a global table
called arg. The script name is stored at index 0, the first argument after the script name goes to
index 1, and so on. Any arguments before the script name (that is, the interpreter name plus the
options) go to negative indices. For instance, in the call

 $ lua -la b.lua t1 t2

the interpreter first runs the file a.lua, then creates a table

 arg = { [-2] = "lua", [-1] = "-la",
 [0] = "b.lua",
 [1] = "t1", [2] = "t2" }

and finally runs the file b.lua. The script is called with arg[1], arg[2], ··· as arguments; it can
also access these arguments with the vararg expression '...'.

In interactive mode, if you write an incomplete statement, the interpreter waits for its completion
by issuing a different prompt.

If the global variable _PROMPT contains a string, then its value is used as the prompt. Similarly, if
the global variable _PROMPT2 contains a string, its value is used as the secondary prompt (issued
during incomplete statements). Therefore, both prompts can be changed directly on the
command line or in any Lua programs by assigning to _PROMPT. See the next example:

 $ lua -e"_PROMPT='myprompt> '" -i

(The outer pair of quotes is for the shell, the inner pair is for Lua.) Note the use of -i to enter
interactive mode; otherwise, the program would just end silently right after the assignment to
_PROMPT.

To allow the use of Lua as a script interpreter in Unix systems, the stand-alone interpreter skips
the first line of a chunk if it starts with #. Therefore, Lua scripts can be made into executable
programs by using chmod +x and the #! form, as in

 #!/usr/local/bin/lua

(Of course, the location of the Lua interpreter may be different in your machine. If lua is in your
PATH, then

 #!/usr/bin/env lua

is a more portable solution.)

7 - Incompatibilities with the Previous Version
Here we list the incompatibilities that you may find when moving a program from Lua 5.0 to

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 97 of 99http://www.lua.org/manual/5.1/manual.html

Lua 5.1. You can avoid most of the incompatibilities compiling Lua with appropriate options (see
file luaconf.h). However, all these compatibility options will be removed in the next version of
Lua.

7.1 - Changes in the Language
The vararg system changed from the pseudo-argument arg with a table with the extra
arguments to the vararg expression. (See compile-time option LUA_COMPAT_VARARG in
luaconf.h.)
There was a subtle change in the scope of the implicit variables of the for statement and
for the repeat statement.
The long string/long comment syntax ([[string]]) does not allow nesting. You can use
the new syntax ([=[string]=]) in these cases. (See compile-time option LUA_COMPAT_LSTR
in luaconf.h.)

7.2 - Changes in the Libraries
Function string.gfind was renamed string.gmatch. (See compile-time option
LUA_COMPAT_GFIND in luaconf.h.)
When string.gsub is called with a function as its third argument, whenever this function
returns nil or false the replacement string is the whole match, instead of the empty string.
Function table.setn was deprecated. Function table.getn corresponds to the new length
operator (#); use the operator instead of the function. (See compile-time option
LUA_COMPAT_GETN in luaconf.h.)
Function loadlib was renamed package.loadlib. (See compile-time option
LUA_COMPAT_LOADLIB in luaconf.h.)
Function math.mod was renamed math.fmod. (See compile-time option LUA_COMPAT_MOD in
luaconf.h.)
Functions table.foreach and table.foreachi are deprecated. You can use a for loop with
pairs or ipairs instead.
There were substantial changes in function require due to the new module system.
However, the new behavior is mostly compatible with the old, but require gets the path
from package.path instead of from LUA_PATH.
Function collectgarbage has different arguments. Function gcinfo is deprecated; use
collectgarbage("count") instead.

7.3 - Changes in the API
The luaopen_* functions (to open libraries) cannot be called directly, like a regular C
function. They must be called through Lua, like a Lua function.
Function lua_open was replaced by lua_newstate to allow the user to set a memory-
allocation function. You can use luaL_newstate from the standard library to create a state
with a standard allocation function (based on realloc).
Functions luaL_getn and luaL_setn (from the auxiliary library) are deprecated. Use
lua_objlen instead of luaL_getn and nothing instead of luaL_setn.

http://www.lua.org/manual/5.1/manual.html#pdf-string.gmatch
http://www.lua.org/manual/5.1/manual.html#pdf-string.gsub
http://www.lua.org/manual/5.1/manual.html#pdf-package.loadlib
http://www.lua.org/manual/5.1/manual.html#pdf-math.fmod
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://www.lua.org/manual/5.1/manual.html#pdf-package.path
http://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage
http://www.lua.org/manual/5.1/manual.html#lua_newstate
http://www.lua.org/manual/5.1/manual.html#luaL_newstate
http://www.lua.org/manual/5.1/manual.html#lua_objlen

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 98 of 99http://www.lua.org/manual/5.1/manual.html

Function luaL_openlib was replaced by luaL_register.
Function luaL_checkudata now throws an error when the given value is not a userdata of
the expected type. (In Lua 5.0 it returned NULL.)

8 - The Complete Syntax of Lua
Here is the complete syntax of Lua in extended BNF. (It does not describe operator
precedences.)

 chunk ::= {stat [`;´]} [laststat [`;´]]

 block ::= chunk

 stat ::= varlist `=´ explist |
 functioncall |
 do block end |
 while exp do block end |
 repeat block until exp |
 if exp then block {elseif exp then block} [else block] end |
 for Name `=´ exp `,´ exp [`,´ exp] do block end |
 for namelist in explist do block end |
 function funcname funcbody |
 local function Name funcbody |
 local namelist [`=´ explist]

 laststat ::= return [explist] | break

 funcname ::= Name {`.´ Name} [`:´ Name]

 varlist ::= var {`,´ var}

 var ::= Name | prefixexp `[´ exp `]´ | prefixexp `.´ Name

 namelist ::= Name {`,´ Name}

 explist ::= {exp `,´} exp

 exp ::= nil | false | true | Number | String | `...´ | function |
 prefixexp | tableconstructor | exp binop exp | unop exp

 prefixexp ::= var | functioncall | `(´ exp `)´

 functioncall ::= prefixexp args | prefixexp `:´ Name args

 args ::= `(´ [explist] `)´ | tableconstructor | String

 function ::= function funcbody

 funcbody ::= `(´ [parlist] `)´ block end

http://www.lua.org/manual/5.1/manual.html#luaL_register

4/13/10 12:49 PMLua 5.1 Reference Manual

Page 99 of 99http://www.lua.org/manual/5.1/manual.html

 parlist ::= namelist [`,´ `...´] | `...´

 tableconstructor ::= `{´ [fieldlist] `}´

 fieldlist ::= field {fieldsep field} [fieldsep]

 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp

 fieldsep ::= `,´ | `;´

 binop ::= `+´ | `-´ | `*´ | `/´ | `^´ | `%´ | `..´ |
 `<´ | `<=´ | `>´ | `>=´ | `==´ | `~=´ |
 and | or

 unop ::= `-´ | not | `#´

Last update: Wed Sep 10 09:22:34 BRT 2008

