Kubernetes
pocket guide

Arye Afshari
Mohsen Shojaei Yegane

and explain all the important ideas and knowledge about Kubernetes in a simple way.
Whether you're just starting out or already have experience with it, this guide will be
your helpful companion. It provides clear explanations and makes it easier for you to

learn the basics of Kubernetes

The Kubernetes Pocket Guide is a small and easy-to-use document that helps you
understand Kubernetes better. Inside this booklet, we have taken great care to gather
3

PUANANATNELS

booklet has another standardized format that was produced for learnk8s

T learnk8s

Sponsored by learnk8s, this booklet is offered freely to the public.

Learnk8s, an esteemed educational platform, specializes in Kubernetes

training courses, workshops, and educational articles. Additionally, this
cm——

@DEV_CHEATSHEET

Note: The content of this booklet is written based on Kubernetes version 1.25

Table of Contents

Core Concept

O© O O 000 O O LB B

W W W N = e
N OO OO NO0NO = O

Kubernetes

Kubernetes Architecture
Methods of building k8s cluster
Kubectl

Pod

Workload

Deployment

Namespace

Resource quota, Limit range
Resource requirements & Limit
Service

Endpoint

Dns

Daemonset

Static pod

Autoscaling (HPA ,VPA)

Job & Cronjob

Statefulset

Headless service

Statefulset & storage

Scheduling

12
12
12
12
13
13
14
15
15
15

How scheduling works?
Label & selector

Annotations

Node selector

Affinity & anti-affinity

Taint & toleration
Taint/tolerate & node affinity
Priority class & preemption
Pod distribution budget

Bin packing

Lifecycle Management

18 Configmap, Secret

19 Init Container

19 Pod Lifecycle

20 Sidecar Container

21 Rollout & Rollback

22 Probes

23 Node Maintenance

24 Cluster upgrade

25 Backup & Restore
Security

26 Security

27 Authentication

27 Authorization (RBAC)

27 Admission control

28 Service Account

29 Api groups

29 Kubeconfig

30 Authentication with X509
31 Auditing

31 RuntimeClass

32 Network Policy

32 Security Context

32 Image security

33 Gatekeeper
Storage

34 HostPath volume

34 EmptyDir volume

34 Persistent volume(pv) & pvc
35 Static & Dynamic provisioning

Addons

38
38
38
39
40
41

How to deploy an application in k8s?
Kustomize
Helm
Operator
Ingress
Cert-Manager

Kubernetes(k8s)

Kuberneteg, also known ag K8z, is an open-source platform for managing containerized workloads and services. It provides a way to deploy, scale, and manage
containerized applicationg across a cluster of nodes. Kubernetes wag originally developed by Google and is now maintained by the Cloud Native Computing
Foundation (CNCF)

Kubernetes provides a set of powerful abstractions and APls for managing containerized applications and their dependencies in a standardized and consistent
way. lt allows you to declaratively define your application's desired ctate in the form of a set of Kubernetes objects (such ag pods, services, deployments, config
mape, and many otherg), and then Kubernetes takes care of actually running and managing those objecte on a cluster of machines

[Qtah’ulgef][ConfigMap][Depoymenf][Service]
>[Kube—api] [Depoymem][Secret][Service][Ingress]
[Eted][C-M J[Sched] [ServiceAccount][Pue IgforageClass][Pue]

Master Node Worker Node Kubelet
you create YAML manifests that describe the
o Kubernetes Cluster

Kubernetes objects that make up your application
Why you need Kubernetes and what it can do?
Qimplify container management: Kuberneteg provides a unified API for managing Improve scalability: Kubernetes makes it easy to scale containerized applicatione up or
containers, making it eagier to deploy and manage containerized applications down baged on demand, ensuring that applications can handle increased traffic or demand
acrose multiple hosts or cloud providers without downtime or disruption
Enhance regiliency: Kubernetes provides built-in fault tolerance and self-healing [ncreage automation: Kubernetes automates many of the taske involved in deploying and
capabilities, which can help keep applications running even in the face of managing containerized applications, such a rolling updates, sealing, and load balancing.
hardware or software failures Thig can help reduce the burden on operations teame and improve efficiency
Simplify application deployment: Kuberneteg provides a consigtent way to deploy Provide flexibility: Kubernetes ig highly configurable and extensible, allowing developers
and manage containerized applications across different environments, such ag and operations teams to customize it to meet their specific needs. This includes support
on-premigeg data centers or public cloud providers for different container runtimes, storage systems, and networking pluging

Kubernetes allows you to ehoose the Container Runtime [nterface (CRI), Container Network [nterface (CNI), and Container Storage Interface (CSI) that
you want to use with your cluster

The CRU g a standardized interface between Kubernetes and the container runtime that is responsible for WebApps & Services
starting and stopping containers. The CRI abstracts away the details of the container runtime, allowing
Kubernetes to work with any container runtime that implements the CRI interface. This makes it possible to uge
different container runtimes on different nodes in the same cluster, or to switch to a different container runtime
without having to modify your applications or infrastructure

Service Management

Scheduling

Orchestration

The CNlig a standard for configuring network interfaces for Linux containers. Kubernetes usee a CN(plugin to S)

configure the network interfaces for the containers running on your clugter. The CNI plugin is regponsible for

setting up the network namespace for the container, configuring the [P address and routing, and setting up any .
he) Machine & 08 Machine & OS
necessary network policies or security rules. By using a CNl plugin, Kubernetes makes it eagy to switch between
different networking solutions or to use multiple networking solutions in the same cluster Machine infrastructure
The CSlis a standard for exposing storage systems to container orchestrators like Kubernetes. Kubernetes uses a CSl driver to interact with the underlying storage system. The CSl driver is

regponsible for managing the lifecycle of the storage volumes used by your applications, including creating, deleting, and resizing volumes. By using a CSl driver, Kubernetes makes it eagy to
uge a wide range of storage systems with your applications, ineluding cloud-based storage solutions, on-premises storage systems, and epecialized storage solutione for epecific use cases

Container orchestration ie the process of managing, deploying, and scaling containers in a distributed environment. It involves automating the deployment and management of containerized
applications across a cluster of hosts, and ensuring that the containers are running as expected. Container orchestration systems typically provide features such ag container ccheduling, load
balancing, cervice diccovery, health monitoring, and automated ccaling based on demand. Today, Kubernetes-ig the most popular container orchestration platform used globally

k8¢ Cluster ig a set of nodes that work together to run containerized applications. The nodes can be virtual or phygical machines, and
they typieally run Linux as the operating system. The cluster consists of two main types of nodes:

Magter Node Magter Node

w0 o]
I Kube-api] L Kube-api T

Kubelet Kubelet Kubelet ‘

Worker Node(s): The worker nodes, also known as worker or minion nodes,
are regponsible for executing the actual workloads and hosting the containers.

Master Node(e): The magter node i¢ respongible for
managing the overall state and control of the cluster.

Worker Node Worker Node Worker Node

Kubernetes cluster

Kubernetes Architecture:

Kubernetes i¢ built on a magter-worker architecture. The master node is responsible for managing the overall state of the cluster, while the worker nodes

run the actual application workloads. The components of the Kubernetes master node include the AP server, eted, scheduler, and controller manager.

The worker nodes run the kubelet, kube-proxy, and the container runtime

The cluster control plane

pod pod pod
Container

Decides witeh node should
Run Kubernetes controllers be “7d for each Pod % Worker Node
¢ M~ —]
Master Uy y
K-proxy kubelet

el

Kube-controller-manager Kube-scheduler

Kube-apiserver

©

eted
Eted

runtime

f\‘ Linux

)

1
Allows interacting
with the control plane

Key-value databage uged ag backing
store for all cluster configuration data

The kube-apiserver is the control plane component that serves ag the primary management
entity for the cluster. [t handles all communication and authentication, and controls all other
components of the cluster. Additionally, the kube-apiserver is aleo respongible for monitoring
and controlling the state of the cluster, making sure that all components are running as
expected.

Eted ic a distributed key-value databage that is used by Kubernetes to store cluster state
data. lt is respongible for maintaining the configuration detaile of the Kuberneteg cluster and
is the only component that interacts directly with the kube-apigerver. eted provides a reliable
and highly available data store for Kubernetes, ensuring that the cluster can recover quickly
from failures and maintain congistency across all nodes.

The kube-gcheduler ic responsible for assigning newly created pods to nodes in the cluster. [t
reads the list of unassigned pods from eted and, using a variety of algorithme and configurations,
determines which node each pod should run on. Once it hag made ite decision, the kube-scheduler
informs the kube-apiserver, which in turn communicates with the kubelet on the chosen node to
start the pod's containere and begin running the workload.

The kube-control-manager is a collection of controllers that manage various aspects of the
Kubernetes cluster. These controllers include the node controller, which watehes the state of
nodes in the cluster and takes actions to engure that nodes are stable and healthy. For example,
if a node fails, the node controller will take actions to ensure that the workloads running on
the failed node are rescheduled onto other nodes in the cluster. Other controllers in the kube-
control-manager include the replication controller, endpoint controller, and service account
and token controllers, which manage other agpects of the cluster such ag gealing, networking,
and gecurity

Worker Node

_— .
pod pod pod
k-proxy kubelet Gontainer

(1\ / Linux \

Maintaing network rules on nodes
Manage containers on node

Run containers on node

The kubelet ig the primary node agent that runs on each worker node in the Kubernetes
cluster. [t ig respongible for managing and monitoring the state of containers running on

the node, ag well a¢ encuring that the containers are healthy and running as expected.

The kubelet communicates with the kube-apiserver to receive instructions on which pods
to run on the node, and reports back to the master node with updates on the status of the
containers and their health. Additionally, the kubelet also manages the networking and
storage configurations for the containers running on the node

The Kube-proxy is respongible for managing the networking and routing configurations
for services within the cluster. In Kubernetes, a service functiong ag an abstraction layer
that facilitates communication between pods in the cluster. When a service is established,
Kuberneteg generates a set of iptables rules on each node within the clugter. Managed by
kube-proxy, these rules enable traffic o be accurately directed to the appropriate pods
agsociated with the service, irrespective of the node they operate on. This ensureg that
communication between the pods and services is both reliable and efficient.

The container runtime is responsible for running containers on each node in the clugter. The
container runtime is a software component that manages the lifecycle of containers, including
pulling container images from a registry, ereating and starting containers, monitoring their
health, and stopping or deleting them when they are no longer needed.

Kubernetes components can be run in a Kubernetes cluster as containers or system-level services, depending on their requirements and the needs of the cluster.

In general, Kubernetes components that require access to system resources or need to run on the node iteelf (cuch ag the kubelet and kube-proxy) are run ag system-level
services on each node. Components that do not require direct access to system resogurces and can be run in a container (such as the APl server, eted, kube-scheduler, and

kube-controller-manager) are typically deployed as containers in pods

Methods of building a Kubernetes cluster:

There are several ways to build a k8s cluster, depending on your requirements and the resources you have available. Here are some common approaches:

Self-hosted Kubernetes cluster: In this approach, you set up and manage your own Kubernetes cluster on your infrastructure. This requires expertise in Kubernetes and
infrastructure management, but gives you full control over the environment. You can use tools like kubeadm, kops, Rancher, kubespray to set up and manage the cluster.
Thig approach can be a good fit if you have specific security or compliance requirements, or if you need to customize the environment to your needs.

Cloud-hosted Kubernetes cluster: Most eloud providers offer managed Kubernetes services, such as Amazon EKS, Google Kubernetes Engine (BKE), or Microsoft Azure
Kubernetee Service (AKS). With thie approach, the cloud provider manages the underlying infrastructure and Kubernetes control plane, while you manage the worker nodes
that run your applications. Thie approach can be more cost-effective and reduces the operational overhead of managing your own infrastructure. lt' a good fit if you're
already uging a cloud provider and want to leverage their managed Kubernetes gervice.

Clugter ag a Service: Cluster ag a Service (CaaS)is a cloud-baged service that lets you create and manage Kubernetes elusters without worrying about the underlying
infrastructure. Providers like DigitalOcean, Linode, and Platform9 offer Caa$ solutions that simplify the process of creating and managing Kubernetes clusters. With this
approach, you get the benefits of managed Kubernetes services without being tied to a specific cloud provider.

Containerized Kubernetes: You can run k8s as a containerized application on your infrastructure or in the eloud. This approach i useful for development and testing
environment, ag it lete you spin up a Kubernetes cluster quickly and eagily. You can use tools like Minikube, or KinD to create containerized Kubernetes clusters.

[n summary, there are several ways to build a k8z cluster, each with its own benefits and trade-offe. The approach you choose will depend on your specific needs and constraints.

How to connect to a Kubernetes cluster

To connect to a Kubernetes eluster, you usually use kubectl: kubectl is a powerful and flexible command-line tool for managing Kubernetes clusters, providing a
simple and congistent interface for interacting with Kubernetes resources and performing operations on the eluster

When a uger rung a kubect! command, kubectl sends an HTTP request to the Kubernetes APl server using the APl endpoint specified in the kubect! configuration
file. The APl server then processes the request, performs the requested operation, and returns a response to kubectl.

The to engure that only authorized ugers can access and modify resources in the cluster.
By default, kubectl uges the credentiale and configuration information stored in the .kube/config file to authenticate and authorize requests to the APl server

K8s uges a configuration file called "kubeconfig" to store information about how to connect

. L . [sudo kubectl(==kubeconfig /etc/kubernetes/admin.conf)get node]
to a Kubernetes eluster. This file containg information about clusters, users, and contexts

{
If a configuration file i¢ not present in the ~/ kube directory, we must pags it each
time we run a command. To avoid this inconvenience, we can follow these steps

apiVersion: v1

kind: Config An example kubeconfig file mkdir -p $HOME/.kube
sudo scp user@cluster-ip/etc/kubernetes/admin.conf $HOME/.kube/config
clusters: sudo chown $(id -u):$(id -g) $HOME/.kube/config
- name: k8s-st1
cluster: provides information about a Kubernetes cluster. Each cluster configuration

certificate-authority-data: <certificate data> | . -
server: https://127.0.0.1:41285 includes the cluster name, server URL, and any necessary authentication used fo display the current kubeconfiy fie. It shows all

----------- information such as a certificate authority kubect! config view | of the clusters, users, and contexts defined in the file
users: 27

- name: arye provideg information about a uger that can authenticate to a k8s cluster.
user: E . .
ach uger configuration includes the user name and any necesgar
client-certificate-data: <certificate data> o 'g . } . Y y a third-party utility that can be used to switch
client-key-data: <key data> authentication information such as a elient certificate and key / between contexts defined in the kubeconfig file
contexts:
- name: arye@k8s-st1 specifies a cluster and a user to use when connecting to a k8s cluster. Each
BEIEE context configuration also includes an optional namespace that specifies the

cluster: k8s-st1 A P
default to uge when ting e ds against the cluster

v

namespace: dev
P 8¢ Cluster

This field specifies the default context to use when executing "kubect!” commands Magter Node []
current-context: arye@k8s-st1 Worker Node !

& > POST requests)
—————————— Kube-api Worker Node

REST APICall

|

You can use autocompletion for kubectlin zsh and bash

This seript provides auto-completion support for kubectl commands and flags when using the zsh shell with the Oh My Zsh framework

{kubectl completion zsh > ~/.oh-my-zsh/custom/plugins/kubectl.plugin.zsh }

Once the seript is generated and saved in the appropriate directory, you can
enable it by adding kubect! to the pluging array in your ~/.zshre config file git

kubectl

To generate a shell completion seript for the bash ghell, you ean use the following command

[kubectl completion bash > /etc/bash,completion.d/kubect\]

Having access to the cluster configuration file can potentially allow an attacker to view, modify, or delete resources in the cluster, ag well as perform other

malicious actions. Therefore, it is important to ensure that access to the cluster configuration file is tightly controlled and restricted to only those who need it L.ﬁd

Kubernetes objects]

Podg are the smallest deployable units of computing that you can ereate and manage in Kubernetes.A Pod ie a group of
one or more containers, with shared storage and network resources, and a specification for how to run the containers

Pods encapsulate and manage application processes and are created using a pod specification, which describes the desired state of the
pod, including the containers to run, the network configuration, and any storage volumes to use. Pods are scheduled to run on nodes in the
cluster by the Kuberneteg scheduler and can be managed uging labels and selectors to group and organize them baged on their attributes

When creating a pod , you can specify various settings for the pod and the
containers running in it. Here's an example YAML manifest that creates a pod

B To run a container, it must be part of a pod. This mean that containers

+/" cannot be directly brought up in the cluster without being part of a pod

S e

Kubernetes &=
objects

o,

for rznnra/anmw

D O2cqf,
'%%%'

@%

Q

raprersmn: vi1 (pod-def.ymI)
kind: Pod specifies which version of the Kubernetes APl s
metadata: used to create and manage the resource

[kuhect\ create -f pod-df.yml

J The kubectl ereate -f command i¢ uged to create a Kubernetes resource from a YAML file

name: pod-nginx specifies the type of Kubernetes resource

namespace: default

1

k get pods -0 wide -w
READY STATUS

IP
10.244.83.193

RESTARTS
0

AGE
7m53s

NODE
kubeworker-1

NOMINATED NODE
<none>

READINESS GATES

/1 Running. <none>

kis a alias for
labels: the kubect! IAME
app: nginx pod-nginx
type: front-end
spec: The spec field contains the specification for the pod, including
containers: the containers to run, the network configuration, and any

- name: nginx-container
image: nginx:1.18

storage volumes to use,

To check the status of a pod , you can use the kubectl describe pod command and check the Events section. This
section shows a list of events related to the pod, including the time of occurrence, type of event, and a description
of the event. This information can be useful for monitoring and troubleshooting issues with the pod

f N
kubectl explain command provides detailed information about Kubernetes APl resources. [t arye@arye-dev : kubectl describe pods pod-nginx
allows you to view the structure, properties, and possible values of any Kubernetes resource
B Events:
kubectl explain pods Type Reason Age From Message
Kubectl explain pods.spec.containers — J— — B —
Normal Scheduled 8m4s default-scheduler Successfully assigned default/pod-nginx to kubeworker-1
Warning Failed 8mls kubelet Error: ErrlmagePull
&ubcct\ delete -f pod-df.yml) Normal BackOff 8mils kubelet Back-off pulling image "nginx:1.18"
A 5 . Warning Failed 8mls kubelet Error: ImagePullBackOff
\ this command i used to delete a k8 regource that wag created using a YAML file Normal Puling 7m46s (x2 over 8m3s) kubelet Pulling image "nginx:1.18"
[n Kubernetes, if you update a YAML file and want to apply the changes to a running Nemel Rulss) - S belet Successfully pulled image "nginx:1.18
Normal Created 3m58s kubelet Created container nginx-container
pod, only a few fields can be updated, and you cannot update all fields in the YAML file. Normal ~Started ~ 3m57s kubelet Started container nginx-container
J

[f you make changes that affect fields outside the scope of updateable fields, you must
delete the pod and then apply the new YAML file to create a new pod

Process of ereating a pod in Kubernetes:

@ Define Pod specification : Thig involves ereating a pod manifest yaml file that defines the pod properties like name, labels, containers, volumes etc.

and then checks for the necessary permissions or authorizations to ereate the pod.

@ Authentication and Authorization: When a request to ereate a pod is sent to Kubernetes through kubectl or the Kubernetes AP, the kube-api module first authenticates the request

that the manifest file is well-formed and adheres to the Kubernetes APl schema.

@ Manifest Syntax Check: If the authentication and authorization processes are successful, kube-api checks the manifest file agsociated with the pod for syntax errors. This ensures

© Writing to eted: If the syntax check is successful, kube-api writes the pod's manifest file to eted

O Pod Scheduling: The scheduler is respongible for agsigning pods to nodeg in the clugter based on resource availability and other factors. The scheduler continuougly monitors the
cluster for new pods and nodes and attempts to schedule the pods to run on the available nodes.

the AP, which updates eted with this information.

© Reporting to API: The scheduler requests unassigned pods from the Kubernetes APl and selects a node to assign the pod to. The scheduler then reporte the selected node back to

@ Sending Creation Request to Kubelet: Once the APlupdates eted with the selected node information, it sends a creation request to kubelet, the agent running on each node
regponsible for running the pod. Kubelet then starts the process of creating the pod on the selected node, pulling the necessary container images and starting the containers.

container gtatuges, and [P address.

@ Dod Status Update: Ae the pod i¢ being created, kubelet updates the pod status in eted to reflect the current state of the pod. Thig includes information such ag the pod's phage,

0 Request to create a pod is sent to Kubernetes

7 kube-api authenticates the request

8 kube-api writes the pod's manifest file to eted

NAME
pod-nginx

kube-api checks authorizations

2 kube-api checks the manifest file

01

STATUS ~ RESTARTS AGE

= The scheduler finds a new unassigned pod on eted and

P NODE]

with the pod for syntax errors

[kubcct\ apply -f pod-df.yml

rap\\/ers\on: vl
kind: Pod
metadata:
name: pod-nginx
namespace: default

el 5 Kube-api updates eted with changes pod’s status filed

app: nginx

tppe_ f?'ont»end NAME STATUS ~ RESTARTS AGE 1P NODE

ype: podnginx 071 Pending 0 ™ Kubeworker-1
spec:
containers:

- name: nginx-container
image: nginx:1.18
_ J 6 Kube-api sends a pod creation request to kubelet

7 kube-api reads pod information from kubelet and updates the pod status in eted

attempts to sehedule it to run on an available node

The scheduler selects a node to assign the pod to it
The scheduler reports the selected node to the kube-api

STATUS
Running

RESTARTS ~ AGE
0 7h17m

NODE

n kubeworker-1

)

— The assignment of P address to Pod is handled by the CNI

P
10.244.83.193
N

Kubelet pulls the container images and starting the containers, updated pod status

7 ((arve@arye-dev : kubect! describe pods pod-nginx

Events:

- 7>| [XXL] Type Reason Age From Message
1 e I| Nomal scheduted 1mas default-scheduer cessfully assigned default/poc-ngin to kubeworker-
7 | kubelet S || Normal puiing 1mass Kubelet Pulling image "nginx:1.18"
Normal Puled 1mS8s kubelet Successfully pulled image "nginx:1.18"
| | o E R
1 kubeworker-(SE7 | Normal Started

2m kubelet Started container nginx-container

Workloads

Workload object is a resource that defines how to run a containerized application or a set of containerized applications in a cluster. Workload objecte are used to manage the
deployment, scaling, and management of containerized applications within a Kubernetes cluster.

The most basic workload object in Kuberneteg is the Pod, which represents a single instance of a running container. However, managing Pods directly can be complex and
error-prone, which is why Kuberneteg provides higher-level workload objects that abstract away the details of Pod management.

(3\
Horizontal Pod Autogealer

Kubernetes workload objects

4) 4

Deployment CronJob

Seales the number of Pods
based on various metrics

StatefulSet

Creates a ReplicaSet and takes

Creates Jobs based on a time

Creates Pods while handling the
L needs of stateful applications y

care of rollouts and rollbacks schedule

- J & J
1\ 4 1\
Replicaget Job DaemonSet

Createg the desired amount of Creates short living Pods for Creates exactly one Pod per
L Pod ingtances) one time executions Node
4)

Pod

Smallest k8s compute
containing 1..n containers

workload objecte in Kuberneteg provide a declarative and automated way of managing containerized applications in a cluster. By defining the desired state of your application
uging workload objects, Kubernetes can handle the detaile of creating, scaling, and updating the underlying pods that run your application

If a pod is deleted, the system does not automatically recreate it because there is no pod controller in 'kube-control-manager . Therefore, even if you have only one pod, it is better
to place it ag a subset of a new object called a ReplicaSets that it can be managed by the replication controller. This tool can automatically perform load balancing and sealing.

ReplicaSet is a k8s object that ensures a specified number of replica Pods are running at all times. If a Pod
managed by a ReplicaSet fails or is deleted, the ReplicaSet will automatically create a new replica to replace it

Groups
apiVersion: apps/v1

The ReplicaSet controller continuously monitors the state of the cluster and compares it to the
desired state specified in the ReplicaSet definition. If there are fewer replicas than the desired
number, the controller will create new replicas to bring the cluster back to the desired state. If

there are more replicas than the desired number, the controller will delete the excess replicas

kind: ReplicaSet
metadata: [t is recommended to use kubectl apply instead of kubect| create
name: replicaset-nginx
spec: kubectl apply -f rs-def.yml
template: kubect! describe rs replicaset-nginx
metadata:
labels:
. L. . o K get rs
app: nginx
This gection ig the same as defining a pod, . ec_pp g R I GETET I AR
and if a pod ig deleted, it can be recreated pec: replicaset-nginx 3 3 3 13s
containers:
based on this template - name: nginx
image: nginx:1.17 ReplicaSet is designed to ensure that the current state of the cluster matches the
The bode that P S replicas: 3 desired state specified in ite definition. The desired state ig defined by the number
e pods that are subsets of thie ReplicaSet 5 N 4 . -
P P selector: of replicas of a specific Pod template that should be running at any given time
must have a label with app: nginx matchLabels:
app: nginx
—
K get pod
NAME READY STATUS RESTARTS AGE P NODE
pod-nginx 11 Running 0 7h17m 10.244.83.193 kubeworker-1
replicaset-nginx-brcs 1/1 Running 0 235 10.244.83.195 kubeworker-1
replicaset-nginx-hm26d ~ 1/1 Running 0 235 10.244.83.194 kubeworker-1

you can scale the number of replicas of a ReplicaSet using the kubectl scale command, or by updating
the replicag field in the ReplicaSet manifest and applying the changes using kubectl apply @Jbect‘ e gy 7rep|‘caszg>

ReplicaSet

replica:3

replication controller

selector:
app:nginx

Container

Labels: b
app:nginx pping

The selector section of the ReplicaSet definition specifies that the pods managed by this ReplicaSet should have a label
with key app and value nginx. Since there is already a pod running with the label app: nginx, the ReplicaSet will select it
as part of its subset and will only create the remaining two replicas to meet the desired number of 3 replicas.

Deployment is a powerful higher-level abstraction that enables you to manage the desired state of your application in Kubernetes. [t ensures that a specified number of
replicag of your application are always running, by creating and managing other Kubernetes resources like ReplicaSets and Pods. With deploymente, you ean perform
rolling updates and rollbacks, making it easy to update your application without any downtime or quickly revert to a previous version in cage of issues.

Deployment Updatec & Rollback

Pod Pod

Container

Replicagef Qelf-healing, scalable, desired state

Container |ee

Container

recommended to uge a Deployment to manage the replicas of a stateless application

A Deployment definition is similar to a ReplicaSet definition in that both are used to manage a set of
replicas of a pod template. However, the main difference is that a Deployment provides additional
functionality for rolling updates and rollbacks of the replicas, whereas a ReplicaSet does not

(ainersion: apps/vi
kind: Deployment
metadata:

name: nginx

N namespace: dev

spec:
template:

metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.17
strategy:
type: RollingUpdate
replicas: 3
selector:
matchLabels:
app: nginx

Namespace

In Kubernetes, Namespace is a way to organize and isolate resources within a cluster. A namespace provides a virtual cluster within a physical cluster, allowing multiple teams or
applications to coexiet within the same Kubernetes cluster

To create a namespace , you can use the kubectl

Q(ubectl create namespace de\D

C create namespace command
1

apiVersion: v1
kind: Namespace
metadata:
name:dev

2

you can also create a YAML file that defines your namespace
and use the kubectl apply command to create the namespace

Fronted namespace.

Dev namespace

Resource quotas

©e
®

Appl

odel

®e

App2

®

Appl

ode2

Each namespace has ite own get of resources, such ag pods, services, storage volumes that are
isolated from resourceg in other namespaces. Thig helps to prevent naming conflicts between
resources and allows different teams or applications to manage their own resources independently

Namespaces provide a way to organize resources and apply resource quotas, network policies, and other settings at a namespace level. For example,
you can limit the number of pods or services that can be ereated in a namespace, or restrict network traffic between pods in different namespaces.

Resource quotas in k8 are a way to limit the amount of compute resources that can be consumed by a get of pods in a namespace. A resource quota is defined as

a Kubernetes object that specifies the maximum amount of CPU, memory, and other regources that can be used by pods in a namespace

[kubectl describe resourcequota saas-team-quota } =>

CThis command will display detailed information about
the saas-team-quota ResourceQuota object, including

the current usage and maximum limits for each resource | pods

If a RegourceQuota ig applied to a namespace but no resource congtrainte are defined for the pods in the template section of a Deployment YAML file, then the Deployment
and ReplicaSet will till be created. However, no pods will enter the running state, as the ResourceQuota will prevent them from consuming any resources

LimitRange

LimitRange is a resource object that is used to specify default and maximum resource limite for a set of pods in a namespace
When a LimitRange ie applied to a namespace, it will only affect newly ereated pods. E xisting pods will not

Name: saas-team-quota
Namespace: dev
Resource Used Hard
configmaps 0o s
limits.cpu 1 4
limits.memory 2 4Gi
persistentvolumeclaims 0 5

5 10
requests.cpu 12
requests.memory 226G
secrets [5
services 1 5
services.loadbalancers 0 2
services.nodeports 0 3
count/deployment.apps 14

have their resource limits automatically updated to match the LimitRange settings

LimitRange is used to set default and maximum resource limits for individual pods or containers within
a namegpace, while ResourceQuota is used to get hard limits on the total amount of resources that can

be uged by all the pods in a namespace

g apiVersion: v1

kind: ResourceQuota
metadata:
name: saas-team-quota

ResourceQuota object specifies the maximum limits for the following resources namespace: dev

The maximum number of pods that can be created in the namespace Sp:C:d
ard:
The total amount of CPU that can be requested by all pods in the namespace <—| pods: "10"

requests.cpu: "2"
requests.memory: 2Gi
limits.cpu: "4"
limits.memory: 4Gi
configmaps: "5"
persistentvolumeclaims: "5"
replicationcontrollers: "5"
secrets: "5"

services: "5"
services.loadbalancers: "2"
services.nodeports: "3"
count/deployment.apps: "4"

The total amount of memory that can be requested by all pods in the namespace <—

The total amount of CPU that can be used by all pods in the namespace “//
The total amount of memory that can be used by all pode in the namespace <

s N
$ k describe ns dev
Name: dev
Labels: <none>
Annotations: <none>
9 Status: Active
apiVersion: v1 Resource Quotas
kind: leltRange Name: comput-quota
metadata: Resource Used Hard
name: dev-resource-limits | | - -
count/deployments.apps 1 2
spec: cpu 6m 100m
e memory 60M 100M
- default:
cpu: 100m pOdé . 6 1
memory: 128Mi No LimitRange resource.)
defaultRequest:
cpu: 50m
memory: 64Mi
max:
cpu: 500m
memory: 512Mi
min:
cpu: 50m
memory: 32Mi
type: Container

Resource Requirements & Limits

thege limit by throttling the container's resource usage if it exceeds the specified limit

Guaranteed cpu resources for container

cpurequest = (00

kunect| describe node kubeworker-1 ==

e
apiVersion: apps/v1
a hq q A o a kind: Depl; t
Resource requirements and limits are used to specify the amount of CPU and memory resources that a container requires in order to run properly | 7 =P ®™e"
name: nginx
Resource requirements are set in the pod specification and indicate the minimum amount of CPU and memory resources that a container namespace: dev
. . . . spec:
needs to run. Kubernetes uses these requirements to determine which nodes in the cluster have the necessary resources to schedule the pod ptemp,ate:
metadata:
Regource limits gpecify the maximum amount of CPU and memory resources that a container ig allowed to use. Kubernetes enforces labels:
app: nginx
spec:
containers:
- name: nginx
Maximum CPU resources for container image: nginx:1.17
Container requires at leagt 100 milliCPU (0. CPU) resources:
and 10 megabytes of memory to run requests:
epu limit =200 G 2 cpu: “100m”
Container i¢ limited to using no more than 200 “mr?tzmory: “Imy
Area in between which k8s can throttle depending on other containers miliCPU (0.2 CPU) and 50 megabytes of memory cpu: “200m”
memory: “50M”
(..) replicas: 3
Capacity: The Capacity section shows the maximum amount of selector:
cpu: 4 matchLabels:
memory: 8192Mi _ resources (such ag CPU and memory) that a node in the app: nginx
A“p{)"c‘ist;ble_ 110 |~ Kubernetes cluster hag available = -
cpu: 3 Allocatable section, shows the amount of resources b e i i
memory: 7168Mi y) a container , the pod will be assigned default values
pods: 110 / that Kubernetes has allocated for use by containers for CPU and memory. The default request value is
and pods on the node 0.5 CPU and 256Mi memory, while the default
A\

Setting resource requirements and limits is important for ensuring that containers have the necessary
regources to run effectively without overloading the system. By specifying resource limits, you can
prevent containers from using too many resources and cauging performance issues or erashes

J

limite value is | CPU and 256Mi memory

When a container reaches or exceeds ite memory limit, the Linux kernel's Out of Memory Killer (OOM Killer) is invoked. The OOM
Killer ig responsible for selecting and terminating processes to free up memory when system memory becomes eritically low. By
default, Kuberneteg lets the OOM Killer celect and terminate the procese within the container that triggered the OOM condition.

Service

Services are a core component in Kubernetes that are used to manage networking and traffic flow within a cluster. They provide a stable [P address and DNS name for a set of pods
and allow for communication between different components within and outside of the application. Services also enable load balancing, service discovery and traffic management,
making them a eritical component for building scalable and resilient applications in Kubernetes.

When a service i¢ created, it i¢ agsigned a virtual I address (known ag a Cluster(P), which g used to route traffic to the pods that are part
of the service. The service also has a DNS name, which can be used to access the service from within the cluster

@ ' apod fails or is removed from the service, controller will automatically remove it from the
list of endpointe for the service. Thig engures that traffic i not sent to a non-existent pod.

OOnoe the new pod i running and ready, service's endpoint
controller will add it back to the list of endpoints for the
service, allowing traffic to be routed to it

(used labels and selectors to discovery)

app: nginx

10.102.156.115

eWhen apod managed by a deployment fails,
The controller creates a new pod to replace the failed pod

@fﬂ aop: i

Pod

app: nginx

10.244.83.197

services uge [abels and celeciors to discover and
route traffic to the pods that are part of the service |

L app: nginx
75%

Selector

X

Service — —

h nm@

10.244.83.196

10.102.156.115

Each service has a unique [P address and DNS name that 7
can be used to access the pods that provide the service.

app: apache

Service types in k8s

10.244.83.210

10.244.83.193

10.244.83.194

é

10.244.83.195

app: nginx

@ Deployment

——|———Replicaset

11— — — Label

ClugterlD

Thig is the default type of service, which exposes

ie only accessible from within the cluster

rainersion: vl
kind: Service
metadata:
name: nginx-internal
namespace: dev
spec:
type: ClusterlP
ports:

protocol: tcp
selector:
app: nginx

- targetPort: 80
port: 80

~

J

service will load balance traffic to any Pods that

have the label app=nginx
port

s the gery

NodePort

This type of service exposes the service on a static
the service on a clueter-internal D addrese that [|port on each node in the cluster, which can be accessed|| using a cloud provider's load balancer, which || DNS name, allowing the service to be accessed from
from outgide the cluster uging the node's [P address

LoadBalancer
This type of service exposes

distributes traffic to the different Pods

the gervice

ExternalName

This type of service maps the service to an external

within the cluster uging a congistent name

apiVersion: v1
kind: Service
metadata:
name: nginx-ext
namespace: dev
spec:
type: NodePort
ports:
—- targetPort: 8080
port: 80
nodePort:8080
selector:

app: nginx

t—
|
|
|
|

J

| The targetPort is used to specify the port number on |
the Pods that the service should forward traffic to |

apiVersion: v1
kind: Service
metadata:
name: nginx-ext-lb
namespace: dev
spec:
type: LoadBalancer
ports:

port: 8080
nodePort:31090
selector:
app: nginx

- targetPort: 8080

~

\

\Node nodePort

The nodePort field is used to specify the high port number on eachnodein | if you don't epecify a nodePort value , Kubernetes will automatically
the cluster that can be used to access the service from outside the clugter

allocate a random high port number (30000-32767}or the service

The selector field specifies the label selector that the service
will uge to find the Pods that it should load balance traffic to

LoadBalancer Service

Thig method requires that your cloud provider
supports LoadBalancer services, and it can

incur additional costs

This type of service exposes the service on a static port on
each node in the cluster, which can be aceessed from outside

To expose a service to the outside world in k8, you can use one of the following methods

NodePort Service

the cluster using the node's [P address

Ingress

An [ngress is a Kubernetes resource that defines a set of rules for routing external HTTP(S) traffic to a service.
Ingress resources require an Ingress controller to be deployed in the cluster, which is responsible for implementing

the routing rules. Ingress controllers are available for many popular web servers, such as Nginx, Traefik

While a load balancer service can provide a stable [P addrese and port for accessing the service, it still requires manual intervention
to update the endpoints, which can be time-consuming and error-prone. Therefore, a better solution to this problem would be to use
Kuberneteg Ingress, which provides a more flexible and automated way of managing external access to the services in a k8s cluster

\

apiVersion: v1
kind: Service
metadata:
name: mysql-service
spec:
selector:
matchLabels:

D)

Service

(LoadBalancer)

Clugter

Pod

Pod

;l Ingress

Service

(ClugterlP)

Service
| (ClusterlP)

10102156125

Service [
(ClugterlP) —

Service
(NodePort)

024483211

When you create a LoadBalancer service it creates a cloud provider-specific
LoadBalancer object, such a¢ an Amazon Elastic Load Balancer (ELB) or
Google Cloud Load Balancer, which i¢ external to the Kubernetes cluster

When you create a Service of type LoadBalancer, k8s will
automatically create a NodePort and ClusterlP for the Service.

spec:

(apiVersion: apps/vl
kind: Deployment
metadata:
name: mysql-deployment
namespace: dev

12

matchLabels:
app: mysql

containers:
- name: mysq
image: mysgllatest
ports:
- containerPort: 3306

env:
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-secret
key: password
- name: MYSQL_DATABASE
value: mydb

- name:

image: prom/mysqld-exporter:v0.12.1
ports:

- containerPort: 9104
env:

- name: DATA_SOURCE_NAME

value: "root:$MYSQL_ROOT_PASSWORD@(localhost:3306)/
$MYSQL_DATABASE?tls=false"

[n the real world,

T,

uged instead of Depl

for stateful appli

B When a service is created, the kube-proxy on each node in the cluster automatically ereates iptables rules to forward traffic to the service endpoints.

[\ptables -A KUBE-SERVICES -d 10.102.156.125/32 -p tcp -m comment --comment "/* dev/mysql: cluster IP" -m tcp --dport 3306 -j KUBE-SVC-ABC123]

TYPE

NAME CLUSTER-IP
mysql-service ClusterlP

10.102.156.125

EXTERNAL-IP PORT(S)
<none>

3306/TCP,

AGE SELECTOR
1d <none>

NODE-PORT ENDPOINTS
10.244.83.210:3306, 10.244.83.211:3306

iptables -A KUBE-SVC-<service-uid>

] [\ptables -A KUBE-SVC-<service-uid>

-j KUBE-SEP-<endpoint-uid-2>

j KUBE-SEP-<endpoint-uid-1>]

Process of creating a service in Kubernetes:]

@ Define the service: The first step in ereating a service is to define the service using a YAML file or through the Kubernetes APL. The YAML file specifies details such as the name
of the service, the selector used to identify the pods that the gervice should route traffic to, and the type of service (ClusterlP, NodePort, or LoadBalancer).

@ Submit the service definition: Once the service definition is created, it can be submitted to the Kubernetes ADI gerver

© ADI Server validates the service definition: The Kubernetes AP server receives the service definition and validates it to ensure that it i well-formed and contains all the required
information.

© Service is created: Once the service ie created, Kubernetes creates an endpoint object that tracke the [P addresses and porte of the pode that the service should route traffic to.
Thig information is stored in eted

@ iptables rules are created: Once the endpoint object is created, kube-proxy ereates iptables rules on each node in the cluster to route traffic to the pods that are part of the service.
These iptables rules are used to ensure that traffic is routed to the correct pod, and that traffic is load balanced across multiple pods if more than one pod matches the selector.

© Access the service: The service is now accessible within the cluster using its name or DN'S name, and can be used to route traffic to the pods that are part of the service.

@ Monitor the cervice: Once the gervice i¢ running, Kubernetes monitore ite health and takes action if any issues arige. For example, if a pod faile, Kubernetes will automatically
remove it from the list of endpoints for the service.

1 Request to create a service is sent to Kubernetes

pods. Kubelet provides kube-proxy with information about the pods that are running on the node, and kube-proxy uses this
information to update the iptables rules as needed.

% Kubelet interacts with kube-proxy to ensure that the iptables rules are properly configured and connected to the appropriate
kubelet

Authentication and Authorization POy
e) 23 Manifest Syntax Check kube-proxy on each node in the cluster automatically creates iptables rules to forward traffic to the service endpoints.
kind: Service ‘ I The following is a simplified overview of the iptables rules created by kube-proxy:
metadata: = A new iptables chain is ereated with the name of the service (e.g. ‘my-service").

|

. |
name: mysql-service |
namespace: dev |
spec: "

type: ClusterlP
The packet is then forwarded to the selected endpoint.

ports: b
- targetPort: 80
port: 80 # Allow traffic from the Kubernetes Service IP address and port to the Kubernetes Endpoints

I
2. Aruleis added to the PREROUTING chain to match incoming traffic that i destined for the service's cluster P address (e.g. 10.0.0.1) and jump to the service chain.
3. In the service chain, a rule i¢ added to select one of the service's endpoints using a load balancing algorithm (e.g. round-robin).

4. The selected endpoint’s [P address is rewritten ag the destination [P address of the packet.

5

. tables -A KUBE-SERVICES -d <ClusterlP>/32 -p t -m tcp --dport <Port> -j KUBE-MARK-MASQ
‘ tp“’mco'- tep eted :Zt:b\: _A KUBE-SERVICES -d <CI:§(::IP>/32 -s éﬁ m tcp --dp?rt Cj’onfo-; KUBOg-;Vé-<sewlce-u\d>
selector:
app: nginx Writing to eted: Kube-api ereates an endpoint object # Allow traffic from the Kubernetes Endpoints to the Pods
4 that tracks the [P addresses and ports of the podg iptables -A KUBE-SEP-<endpoint-uid> -s <PodIP> -j KUBE-MARK-MASQ
iptables -A KUBE-SEP-<endpoint-uid> -s <PodIP> -j DNAT --to-destination <PodIP>:<Port>
Endpoint — A
When a Service is created, the Service controller queries the Kubernetes APl server to get a list of all Pods that match Ve
. . . . kind: End
the Service's label selector. It then creates an Endpoint object that includes the [P addresses and ports of these Pods, e b - 4
5 . l . 5 . . . name: my-web-service
and aggociateg the Endpoint with the Service. The Kubernetes networking layer uses this Endpoint information to route subsets: — =
- addresses:
i i - ip: 10.244.1.194
traffic to the appropriate Pods that make up the Service. i T02ea1 104
p({n:;me_ http Endpoints are automatically created and managed by
port: 80 Kubernetes when you create a Service, and they are updated
protocol: TCP dt ically as Pods are added or removed from the Service

DNS
Kuberneteg has a built-in DNS component that provides naming and discovery between pods running on the cluster. [t assigne DNS records (A records, SRV records, ete)
for each pod/ service automatically. The DNS name follows a specific format, such ag <cervice-name>.<namespace>.sve.cluster.local for accescing a Service or

<pod-name>.<service-name>.<namegpace>.sve.cluster.local for accessing a specific Pod associated with a headless Service.

CoreDNS will have the following DNS records for dev namespace.

nginx-service.dev.svc.cluster.local 10.244.0.100
10-244-0-100.dev.pod.cluster.local @ 10:244.0.55

If a Pod located in the “default” namespace needs to communicate with a service named "nginx-service" residing
in the “dev" namespace, it can do go by using the URL "http://nginx-cervice dev.cve.cluster local”.

Kube-dns Coredns

<pod-name>.<service-name>.<namespace>.svc.cluster.local Sl

/ete/resol
nameserver 1 10.96.0.10 70.244.0.12:53
Kube-system

In Kubernetes, FQDN stands for Fully Qualified Domain Name. It is a complete domain name that
specifies the exact location of a resource within the DN hierarchy. By using FQDNs, Kubernetes
simplifies the process of resource discovery, network routing, and namespace isolation within the cluster

default

)‘ nginx-service nginx-pod ’

Service Pod

The default DNS provider in Kubernetes is CoreDNS, which rung as pods/containers inside the cluster.
CoreDNS retrieves pod/service information from the Kubernetes APl to update its DNS records.

10.244.0.100 10.244.0.55

Notice:Kubernetes does not automatically create DNS records for Pod names direetly. This is because Pod [Ps keep ehanging whenever Pods are recreated or

t DN ition indirectly vi: intl N in:
rescheduled.[nstead, stable DNS records are maintained at the Service level in Kubernetes. Services have unchanging virtual [Ps that act as stable endpoints Pods get DNS resolution indirectly viarecords inthe Pod DNS subdomain

Each Pod gete a DNS record in the format :
.<namegpace>.pod.cluster local

Pod dns policy

Pod's DNS settings can be configured baged on the dnsPolicy field in a Pod specification. Thie dnePolicy field it
g metadata:
accepts three possible values: names mypod
spec:
containers:
ClusterFiret: Any DNS query that does not match the configured search domaing for the Pod are - name: mypod
image: myimage
forwarded to the upstream nameserver. Thig is the default policy if dnsPolicy is not specified. dnsPolicy: "None"
Please note thz_it the Pod's DNS config allows dnsConfig:
None: Allows a Pod to ignore DNS settings from the Kubernetes environment. All DNS settings PR (D et (iR PR B e oifa R ot
. " . hes:
are supposed tobe prowded using the dnsConﬁg fieldin the Pod Spec. [n thic example, the Pod mypod uses a custom DNS resolver (1.2.3.4) and a custom search list se-a ::5'Ie.ssvc.c\uster—doma\n.examp\e
Default: Use the DNS settings of the node that the Pod i running on. This means it will use the i r-dreaberiup it MDA i olB gy o;;(i?nys--dns'semmumx

name containg less than 3 dots, then the search list mechanism will be used. For example, a query for mypod C e ks

same DN as thelode tha the Dod runs on: will be first tried as mypod.nsl.cve.cluster-domain.example and if that fails, as mypod.my.dne.search.suffix. vl T

How gcheduling works?

When a Pod i created, it is not assigned to any specific Node initially. instead, the Pod is marked ag "unscheduled” and is added to a scheduling queue. The scheduler continuously
watcheg thig queue and selects an appropriate Node for each unscheduled Pod.The scheduler useg a set of rules to determine which nodeg are eligible for scheduling. These rules include:

Resource requirements: Node capacity:
The scheduler looks at the CPU and memory requirements || The schedul iders the capacity of each node in the cluster, including Once the scheduler hag identified a set of eligible nodes, it evaluates each
specified in the pod's configuration and ensures that the the amount of available CPU, memory, and storage, and selects a node node’s fitness and assigns a score based on these factors. The node with
selected node has enough available resources to run the pod. that has sufficient capacity to meet the pod's requirements the highest score is selected, and the pod is scheduled to run on that node.
Tainte and tolerations: Node gelectors: Kubernetes also provides the ability to filier nodes based on various
Nodeg in a Kubernetes cluster can be tainted to indicate that they have specific Users can also specify node selectors, which are labels that are attributes before selecting them for scheduling. This allows users to
regtrictions on the pods that can be scheduled on them. Pods can specify applied to nodes in the cluster. The scheduler can uge these specify additional constraints, such as selecting only nodes with

tolerations for thege taints, which allow them to be scheduled on the tainted nodes. || selectors to filter out nodes that don't match the pod's requirements. SPEBiﬁG labels or taints.

Affinity/ anti-Affinity: If the scheduler is unable to find a suitable node for the pod,
Kubernetes allows users to specify affinity and anti-affinity rules that control which nodes pods can be scheduled on. For example, a pod may be required | the pod remaing unscheduled and enters a pending state until

to run on a node that hag a specific label, or it may be prohibited from running on a node that already has a pod with a certain label. a suitable node b ilabl

You can constrain a Pod to run on specific nodes or prefer to run on particular nodes. There are several recommended approaches to achieve thig, including Node Selector,
Affinity/ Anti-affinity, and Taint.

0d8 with a toleration and a node affinity can only be scheduled on
(" Pod8 with a toleration and a node affinity can only be ccheduled
anode that meete both the toleration and affinity requiremente

— —_— F’?\\v/
Pod7 with a toleration for a taint can be scheduled on a node that hag the 5
\ kmatching taint, as well as on any other node that doesn't have the taint)
you can manually set the nodeName field in R |

- - =)
the Pod's spec, and essentially bypassing the (e Pod8

scheduler and telling k8s exactly which Node

pod5 should be scheduled on a node that already ‘ i
hag at least one other pod with the label app=redis a;zzlé):fflnlty:
rd

_—
1o schedule the Pod on. / pod3 should be scheduled on a node\
_that hag a GPU by us'ng the gpu label C requiredDuringSchedulinglgnoredDuringExecution:
S Dod5 [N nodeSelectorTerms:
- matchExpressions:
Pod2 will only be deployed on Dod3) - key: ggu
nodes that have app kafka label affinity: operator: In
affinity: podAffinity:) Pod7 values:
nodeAffinity: requlredDurlngSchedullngIg.noredDurlngExecutlon. - rtx4090
requiredDuringSchedulinglgnoredDuringExecution: nodeSeIectorTerms. A N
Podl Pod2 nodeSelectorTerms: - matchExpressions: tolerations: tolerations:
- matchExpressions: - key: app - e © app’:‘ " - key: “gpu”
nodeSelector: - key: gpu operator: In operator: “Equal operator: “Equal”
nodeName:Node1 app: kafka operator: Exists values: value: “ssd” value: “RTX4090”
- redis effect: “NoSchedule” effect: “NoSchedule”
l ! app: Kafka l gpu: true ! i | -
Nodel Node2 - Node3 . Node4 :
Pod gou: rtx4090
Redis kunect! taint nodes node5 app=ssd:NoSchedule | kunect! taint nodes node5 gpu=RTX4090:NoSchedule

Pod affinity is used to ensure that a pod is scheduled on a node that has other pods running with g taints allow to mark a node as unsuitable for certain pods, Eﬁfolerafions, affinity, and node selectors are defined on
certain characteristics, while node affinity refers to the preference of a pod to be scheduled on a pr g them from being scheduled on that node unless pods, while Labele and taints are defined on nodes
specific node baged on its labels they have amatching toleration

Labels & selector

labels are a powerful mechaniem for grouping and organizing related objects, such as Pods, Services, Deployments, and more. Labels are key-value pairs that can be attached

to Kubernetes objects, and they can be uged for a variety of purposes, such as grouping related objects for easy management, selecting objects for operations such ag scaling
or updating, and enabling fine-grained access control

there are several ways to use labels to group objects in Kubernetes
@ Grouping by object type: You can uge labels to group objects baged on their type, such a¢ Pods, Serviceg, Deployments, ConfigMaps
@ Grouping by application: You can use labels to group objects based on the application they belong to, such as a web application, a database, or a caching layer

@ Grouping by functionality: You can use labels to group objects based on their functionality, such as front-end components, back-end components, databases,
cacheg, authentication services, video processing services

Annotations
Annotationg are similar to labels, but they are designed to store additional information that ie not used for grouping or selection, They can be used to store

information such ag version numbers, timestamps, configuration detaile, and other metadata that is useful for debugging, monitoring, or other purposes

you can uge annotationg to configure the Nginx ingress controller. annotations: Annotations can be up to 256 kilobytes in size, allowing you to
However, for more complex configurations, it can be eagier to maintain ”g'"x ingresekubernd foxyecacteonk

and manage your Nginx configuration by using a ConfigMap

eachepath: "/data/ngine/cache” store more complex metadata with Kubernetes objects (labele are

xy-cache-max-size: "100m" limited to 63 characters)

Node selector

NodeSelector i¢ a feature in Kubernetes that allows you to specify a set of labels that a node must have in order for a pod to be scheduled on that node. When you ereate a pod, you
can gpecify a NodeSelector in the pod spec that will be used to match against the labels of all the nodes in the cluster. [f any node has labels that match the NodeSelector, then the pod
can be scheduled on that node. algo for more complex and multiple constraints such as deploying a Pod on two nodes with different labels, it's better to use Affinity or Anti-Affinity

apiVersion: v1

—————————————————— | kind: Pod
___________ |t | This pod will only be deployed on nodes that have this label metadata:
i name: myapp-pod

This command add the disktype=ssd label to the node named kubeworker-2 Sp: ;;tam ers:

k label node kubeworker-2 disktype=ssd - name: dada-processor

image: data-processor dicktype label
nodeSelector:

:) k label I ker-2 disktype-
workernode-(workernode-2 disktype: ssd disktype: ssd k label node kubeworker-2 disktype:

If a pod's NodeSelector specifies labels that don't exist on any

node, the pod won't be scheduled until a node i labeled appropriately
Pending...

Affinity and anti-affinity

Affinity gives you more control over the scheduling process, allowing you to set rules baged on the node's labels or pod’s labels. Anti-affinity prevents Pode from
being scheduled on the same node or group of nodes.

Affinity Type Deseription

Node Affinity (| Used to specify rules for which nodes a Pod can be scheduled on based on the labels of the nodes.

Dod Affinity ||Used to specify rules for which Pods should be co-located on the came node baged on the labels of other Pods running on the node.

Dod Anti-Affinity J|Used to specify rules for which Pods should not be co-located on the same node based on the labels of other Pods running on the node.

Each type of Affinity can be further Ammfy Caregory Descl‘ipﬁon
broken down into two categories

Required During Scheduling | Specifies that the rule must be gatisfied for the Pod to be scheduled. If the rule is not satisfied, the Pod will not be scheduled.

Dreferred During Scheduling ~ [Specifies that the rule should be saticfied for the Pod to be scheduled, but is not required. If the rule is not satiefied, the Pod will still be scheduled.

apiVersion: v1
kind: Pod S T
e EEs Availability zonel Availability zone2
name: database-pod vail-zone: zonel
spec: =
containers: share: dedicated share: dedicated
- name: database-pod
image: postgres: 13.11 Pod Node Node Node Node
affinity:
nodeAffinity: ¢ | Is: .
preferredDuringSchedulinglgnoredDuringExecution: Preferred labels: Top priority Priority: 2 Priority: 3 Priority: 4
- weight: 80 avail-zone: zonel (weight 80)
preference: share: dedicated (weight 20) |
matchExpressions:
- e at"a"'lw”e we used preferred Node Affinity to specify that the Pod prefers to be scheduled on nodes with the labels avail-zone: zone! and share: dedicated. We
operator: In
values: aleo asgigned a weight to each label to indicate the preference of the Pod. The higher the weight, the higher the priority of the label during scheduling
- zonel
- weight: 20
preference:
tchE:; ions: a q a
ma Eey:x:rh?fe'ons You can specify a weight between [and [OO for each instance of the
OP‘efatO“ In preferredDuringSchedulinglgnoredDuringE xecution affinity type
values:
- dedicated
apiVersion: v1
kind: Pod
metadata: we're using Pod Affinity o specify that the frontend-pod requires that it be scheduled on a node that has Rack { Rack 2
: frontend-pod A q q
Spli'f‘e rontend-po a Pod with the label app=backend in the same rack (topologyKey: “rack"). If no node has a matching Pod
containers: in the same rack, the frontend-pod will not be scheduled. 1
- name: frontend-container Node 1 Node 11
image: frontend-image
affinity: Frontend Pod 3
podAffinity:
requiredDuringSchedulinglgnoredDuringExecution: (required) Backend pod Node 12
- labelSelector: Label selector: app=backend
matchExpressions: Topology key: rack
By
operator: In You can use the [n, Notln, E xiste and DoesNotE xist
lues: q H
- values in the operator field for affinity and anti-affinity. Eronted bods Ll baSohatuiad fo nodes
in the same rack as the backend pod. Node 10 Node 20
topologyKey: "rack"

Taints & Tolerations

Node affinity is a property of pods that can either prefer or require certain nodes for scheduling. In contrast, taints allow nodes to reject certain pods. Tolerations are applied to
pods and enable the scheduler to schedule them on nodes that have the corregponding taints

Taints are defined uging the command, and they consist of a and an effect. The key-value pairigusedto | | —————— >X

Taint A

identify the type of taint Pod

kubectl taint nodes node-name key(=value) Node

Tolerations are applied to pods. Tolerations allow Tainte are node-specific &
the scheduler to schedule pods with matching taints ~ applied to individual nodes

Taint-effect
NoSchedule: Thig effect means that no new Pods will be scheduled on the Node unless they have a corresponding toleration. E xisting Pods on the Node will continue to run

NoE xecute: Thig effect means that any Pods that do not have a corresponding toleration will be evicted from the Node. This can be ugeful for situations where a Node needs
to be drained of ite Podg for maintenance or other reasong

PreferNoSchedule: This effect i similar to NoSchedule, but it allows Pods to be scheduled on the Node if there are no other Nodes available that match the Pod's scheduling
requirements. However, if there are other Nodes available that do not have the taint, the Pod will be scheduled on one of those Nodes instead.

apiVersion: v1
kind: Pod
metadata:
name: db-pod
We apply a taint on workernode-3 spec:
containers:
spec: kunectl taint no kernode-3 app=ssd:NoS: e - name: mysql-container
containers: image: mysql:latest

- name: nginx-container r .
9 workernode-1 workernode-2 workernode-3 al NoSchedule tolerations:

image: nginx:1.18

apiVersion: v1
kind: Pod
metadata:

name: nginx-pod

nginx-pod does not tolerate the taintonthe @~ ————————————————-————————--——————————————
S y . db-pod can still be scheduled on other nodes that do not have that taint
workernode-3 , so it will not be deployed on it Dods that have this foleration can

be scheduled on workernode-3

When you want to deploy a Pod on a specific node, you need to use taint affinity in addition to taints. This is becauge taints only restrict which nodes a
Pod can be scheduled on based on the characteristics of the node, but do not take into account any preferences or constraints specific to the Pod itcelf

Notice: the

magter node in Kubernetes, there are two approaches: adding a toleration or removing the applied taint E(ubecfl describe node kubemaster | grep Taint]

node-role.kubernetes.io/master:NoSchedule

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, taint ic automatically applied by the kubelet on the magter node when the cluster ig initialized. lts purpose is to reserve the magter node
for running control plane components and system Pods, ensuring they have dedicated resources and are not scheduled with regular user Pods. To enable scheduling Pods on the

Taint:

Adding a Toleration: By adding a toleration to the Pod's configuration that matches the taint on the master | Removing the Taint: Another way to allow Pods to be scheduled on the master node is by removing the taint altogether. This approach effectively
node, the Pod can be scheduled on the master node despite the taint. This allows specific Pods to run on

the magter node while preserving its dedicated role for control plane components and system Pods.

tolerations:

openg up the master node for scheduling any type of Pod, including regular user Pods. However, removing the taint means that the magter node may
no longer be exclugively reserved for control plane components and system Pods, potentially affecting the stability and performance of the cluster.

- key: “no e
operator: “Exists ”

ibernetes.io/mas;

and

Taint/ Tolerations & Node Affinity

To achieve fine-grained control over pod scheduling and ensure pods are scheduled on specific nodes while thoge nodes only accept certain pods, you can use a combination of Node

Affinity and Taints and Tolerations.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . Thege taints serve different purposes and affect the scheduling and behavior of pods on the node. (

Firet,we uge Node Affinity to specify the rules for selecting nodes based on their labels

Node Affinity: Node Affinity is used to specify rules that determine which nodes a pod can be scheduled
You can define node affinity rules baged on node labels, node fields, or node selectors. By applying node
affinity to a pod, you can restrict ite scheduling to specific nodes that meet the defined eriteria.

on.

kubectl taint nodes <node-name> node:

Notice: when a node becomes not ready, indicating that it is no longer available to run new workloads, two taints are automatically added to the node: *

kubect! taint nodes <node-name> nc
kubect! taint nodes <node-name> r

You ean remove the taints using the 'kubeot| taint” command with the *remove” option

kunectl label node kubeworker-1 drive=ssd
kunectl label node kubeworker-2 cpu=xeon
kunectl label node kubeworker-3 gpu=yes

Second, we use Tainte and Tolerations to indicate which pods can tolerate which taints on nodes. We can apply a taint to nodes that should only accept certain pods, and then specify

the corresponding tolerations in the pod specification

Tainte and Tolerations: Taints are applied to nodes to repel or prevent pod scheduling by default. However,
you can configure tolerations in the pod's configuration to allow specific pods to tolerate specific taints on
nodes. Tolerations enable pods to be scheduled on tainted nodes by matching the taint's key and value.

kunectl taint nodes workernode-1 drive=ssd:NoSchedule
kunectl taint nodes workernode-2 cpu=xeon:NoSchedule
kunectl taint nodes workernode-3 gpu=yes:NoSchedule

affinity:

nodeAffinity:

tolerations:
- key: “drive”
operator: “Equal”
value: “ssd”
effect: “NoSchedule™

nodeSelectorTerms:
- matchExpressions:
- key: “drive”
operator: In
values:
Define Node Affinity rules in the pod's configuration - ssd
to match specific labels or fields on production nodes

Pod
cpu=xeon

kuneetl [abel node kubeworker-{ drive=sed

kuneet! taint nodes workernode-{ drive=gsd:NoSchedule

workernode-|

drive= 8SD

workernode-2

With thie approach, only pods that have the appropriate tolerations and atisfy the Node Affinity rules will be echeduled
on the these nodes. Other nodes without the specific taint or lacking the required labels/fields won't receive these pode

requiredDuringSchedulinglgnoredDuringExecution:

Pod

& OO

gpu=yes

epu=xeon

Two Pods do not have any tolerations specified in their PodSpec, while the other two nodes do not have
any taints applied. Therefore, the seheduler can schedule these two Pods on either of the taintless nodes.

apiVersion: apps/v1) fainersion: apps/v1 apiVersion: apps/v1
kind: Deployment kind: Deployment kind: Deployment
metadata: metadata: metadata:
name: nfs-app1 name: nginx name: image-processor-app1
namespace: dev namespace: dev namespace: dev
spec: spec: spec:
replicas: 3 replicas: 3 replicas: 3
selector: selector: selector:
matchLabels: matchLabels: matchLabels:
app: nfs app: nginx app: image-processor
template: template: template:
metadata: metadata: metadata:
labels: labels: labels:
app: nfs app: nginx app: image-processor
spec: spec: spec:
containers: containers: containers:
- name: nfs - name: nginx - name: image-processor
__ image: nfs:latest image: nginx:1.17 image: image-processor
o affinity: affinity: affinity:
nodeAffinity: nodeAffinity: nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution: requiredDuringSchedulinglgnoredDuringExecution: requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms: nodeSelectorTerms: nodeSelectorTerms:
- matchExpressions: - matchExpressions: - matchExpressions:
- key: “drive” - key: “drive” - key: “drive”
operator: In operator: In operator: In
values: values: values:
- ssd - ssd - ssd
tolerations: tolerations: tolerations:
- key: “drive” - key: “cpu” - key: “gpu”
operator: “Equal” operator: “Equal” operator: “Equal”
value: “ssd” value: “xeon” value: “yes”
effect: “NoSchedule” effect: “NoSchedule effect: “NoSchedule”

priority clase & Preemption

priority clase ie a way to asgign a priority value to a Pod, which determines its relative importance compared to other Pods. The priority value can be any integer between O and
1000000, with higher values indicating higher priority.

Preemption policies determine whether a higher priority Pod can preempt(evict) a lower priority Pod to be scheduled on a node. There are three preemption policies:

"PreemptlLowerPriority" (default): "IfNoOtherPods": “Never": ip'zj’e:f'v"”: 53797‘*5"1"&"7875;'9/"’1 EPiZefiZ": v
" L . L ind: PriorityClass ind: Po
Pods with this priority class are allowed to preempt Pods with this priority class are allowed to preempt lower Pods with thig priority clags are never | | metadata: metadata:
lower priority Pods if there are no nodes with available priority Pods only if there are no other Pods in the cluster that|| ~allowed to preempt lower priority Pods name: high-priority name: db-1
resources to schedule them without preemption can be evicted to make room for the higher priority Pods I shets

globalDefault: false containers:

BN Rt preemptionPolicy: PreemptLowerPriority - name: db-1
viet,Reschedule

image: mysql:latest

= 1 The globalDefault field indicates whether this PriorityClass R

Pod2 I | should be used for pods without a PrioityCh priorityClasshiamer|high-prioty

Req: mem:300 ! Pod Dod Once you have defined the priority class, you can assign

priorityClassName: high-priority o o Pod2 || Pod it to a Pod by specifying ite spec.priorityClaseName field.

— mem:150 | mem:150 mem:300 || mem:150 d :
-—>
Node-{ appikarka) |2
Available mem:200 Available mem:50

Pod digruption budget

. apiVersion: policy/v1
Pod Disruption Budget (PDB) in Kuberneteg ic a way to ensure that a certain number or percentage of pods with an application are not

o o o[, . . . o] . metadata:

voluntarily evicted at the same time. Thig can help to maintain high availability during voluntary disruptions like upgrades and maintenance. name: my-pdb

spec:

minAvailable: 2
In this example, the Pod Disruption Budget named my-pdb specifies that at | selector:
least two pods with the label app=my-app should be available at all times) |7 matchLabels:
app: my-app

Bin packing

Bin packing in k8s refers to the process of efficiently utilizing resources by scheduling pods on nodes in a way that maximizes resource usage and minimizes wagted regources.
Kuberneteg achieves bin packing through its scheduler, which considers factors such as resource requests, limite, and available resources on nodes to make optimal scheduling
decisions. Kubernetes scheduler follows two strategies to decide the scheduling of Pods:

BestFit: [n thig approach, the scheduler places the incoming Pod in the node with the leact amount of free recources after placement. Thig strategy aims to leave a¢ much space free as possible on every other node.
WorstFit: In thie approach, the scheduler places the incoming Pod in the node with the most amount of free recources after placement. Thig strategy aims to fill up nodes ag much as possible.

[plaeemem failures can oceur in bin packing scenarios in Kubernetes when the scheduler i unable to find a suitable node to schedule a pod due to resource constraints or other constraints defined in the cluster.]

 there are three nodeg in the cluster, each with (OOOm of CPU and 268 RAM. Currently, there are nine running pods (blue) with their allocated resource requests. However, a new pod (orange)
with a request of 300m CPU and 600MB RAM cannot be scheduled. Thig is due to the unavailability of any node that satisfies both the CPU and RAM requirements of the new pod. Surprisingly, even
though the entire elugter hag a total of 600m CPU and I200MB RAM available, the scheduler i¢ unable to find a suitable node.

Problem 1: placement Failure Migrate and Place
you can consider moving Pod A from Node! to Node2. By doing <o, you would congolidate the required resources Node 1| Avail | total| Node 1 | Avail | total] [Node 1 1 Avail | total N°g: “ '1’3‘(’;’:' '18;‘: M °g: 1I'Z’?)‘(’Jail' :ég‘of‘"
N] N VCPu 1 200 1 1000 || VCPu I 200 11000 || vCPu T 200 I 1000 VCPu VCPu CPu
(400m CPU, 900MB RAM) on Node!. This would ereate enough available resources on Nodel for the pending e TEo0 2000 1 Ve Tso0 3000 | e TS0 13000 Mom 130012000 | [Mem T 012000 | | Merm 1500 12000
A rtabl t .
pod X to be comortably placed by the scheduler od A | Req Pod D 1 Req od G | Req Pod x T Req 0d D 1 Req Pod G | Req
VCPU | 200 VCPu | 300 VCPu I 100 VCPuU I 300 VCPu | 300 VCPu | 100
Mem | 400 Mem 1 500 Vem 1 250 Mem 1 600 Mem 1 500 Mem | 250
p dx —— | Req Pod B | Req IPod E | Req IPod H | Req d B | Req Pod E | Req Pod H | Req
0 VCPu | 300 VCPU | 250 VCPu | 200 VCPu | 300 VCPu | 250 VCPu | 200 VCPU | 300
priortyClassName: igh-priority. (ger 550 Vem 1 600 Mem 1 300 Mem 1 750 Mem 1 600 Mem 1 300 Mem 1 750
5 Pod C 1 Req od F 1 Req Pod 1 Req Pod C 1 Req Pod F 1 Req Pod 11 Req
The operation of moving Pod A from Node! to Node2 can be performed manually by directly interacting VCPu 1350 VCPu 1300 VCPu T 400 VCPu 1350 VCPu 1300 VCPu 1 400
. . . - L - Vem 1 500 Mem 1 800 Vem 1 700 Mem 1 500 Vem 1 800 Mem 1 700
with the Kubernetee APL.thic can be done using command.Additionally, adjusting the priorities of your pods = =
: : P . PR Total available capacity across kubernetes Pod A | Req
can help in scenarios where resources are scarce. By assigning appropriate priorities to your pods, you can VCPU : 600 mC memory : 1200 MB VCPu 1200
engure that eritical pods have higher priorities compared to lese eritical pods. When resources become limited, Mem [400

Total available capacity across kubernetes

the Kubernetes scheduler can use these priorities to make decisions about which pods to preempt in order to make room for higher priority pods. By preempting lower VCPU : 300 mC memory : 600 MB

priority pods, Kubernetes ensures that eritical pode get scheduled and receive the necessary resources. This helps in optimizing resource utilization and ensuring that
important workloads are given priority even in resource-constrained environments.

Imbalanced placement in Kubernetes refers to a situation where the distribution of pods or workloads across the nodes in a Kubernetes eluster is uneven or ekewed. Thic can lead to certain nodes being
overloaded while others are underutilized, resulting in inefficient resource allocation and potential performance issues. There are a few common causes of imbalanced placement in Kubernetes:

There are a few common causes of imbalanced placement in Kubernetes:

Node labele and pod affinity/ anti-affinity: Kubernetes provides mechanisms like
node labels and pod affinity/ anti-affinity rules to influence the placement of
pods. If these rules are not properly configured or if there are inconsistencies in
the labele, pods may not be distributed evenly acrose nodes.

Regource requests and limits: Kubernetes allows you to specify resource requests
and limits for pods, indicating the minimum and maximum amount of resources (CPU,
memory) they require. If these values are cet incorrectly or if there i¢ a wide variation
in the resource requirements of pods, it can lead to imbalanced placement.

Node capacity and utilization: If the nodes in a Kubernetes cluster have different
capacities in terme of CPU, memory, or other resources, it can result in imbalanced
placement. Nodes with higher capacity may end up hosting more pods, while nodes
with lower capacity may remain underutilized.

: Nodel hag high CPU usage (90%) but relatively low memory usage (25%). On the other hand, Node3 has low CPU usage (20%) but high memory usage (85%). Thig imbalance in resource
utilization across the nodes can have the following impacts:

Problem 2: imbalanced placement Swap and Balance
Pod B on Node!: Since Pod B ic a CPU-intensive process, the high CPU usage on Nodel indicates that there might be | [Node 7 TAvai T total] [Node 1.1 Avail I total| [Node 1 T Avail I tota Node 11 Avail | total | Node 1 T Avail | total | [Node 11 Avail I total
limited CPU resources available for Pod B during peak load situations. This can result in Pod B experiencing CPU vCPu 1100 1 1000 || vCPu | 300 1 1000 |f vCPu | 200 | 1000 vCPu 1 400 1 1000] vCPu 1200 11000 f{ vCPu | 200 | 1000
! - P LT Mem 1 1500 | 2000 || Mem I 400 1 2000 || Mem I 500 | 2000 Mem 1 950 | 2000 || Mem I 500 2000 || Mem I 500 I 2000
starvation, leading to degraded performance or even failures if it requires more CPU resources than what is

od A | Req Pod C | Req Pod E | Req Pod A | Req Pod C | Req od E | Req

R 7 e . . VCPu | 500 VCPu | 300 VCPu | 100 VCPU | 500 VCPu | 300 VCPu | 100

Pod E on Node3: As Node3 has highmemory usage (85%), Pod E, which is running on Node3, might face memory Ve300 e 500 Ve T550 e300 500 Vem 7950

starvation during peak load scenarios. If Pod E requires additional memory resources that are not available due to
high memory usage on Node3, it can lead to out-of-memory errors or performance degradation

Pod B | Req Pod D | Req od F | Req Pod F | Req Pod D | Req IPod B | Req
vCPu | 400 vCPu | 400 vCPu | 100 vCPu | 100 vCPu | 400 vCPu | 400
Mem | 200 Mem | 1100 Mem | 750 Mem | 750 Mem | 1100 Mem | 200

[f we swap Pod B and Pod F between Nodel and Node3, the observation and impact remain the same. Node! still has 40% CPU usage and 48% memory usage, while Node3 hag 50% CPU usage and 55%
memory usage. With thege resource utilization levels, any pods on thege two nodes hould still be able to handle any kind of peak load without experiencing resource starvation or performance degradation

Daemonget raprersmn: apps/v1)
kind: DaemonSet
A DaemonSet ig a type of controller that ensures that all (or come) nodes in a eluster run a copy of a specific pod. It is often used metadata:
_ . S name: monitoring-deamon
for system-level tagks that should be run on every node, such ag log collection, monitoring, or other types of background tagks namespace: dev-drive-monitor
spec:
When you create a DaemonSet, Kubernetes automatically creates a pod on each node that matches the specified label selector. rempate
If a new node i¢ added to the cluster, Kubernetes automatically creates a new pod on that node as well labels:
app: monitoring
spec:
By using labels and node selectors, you can specify which nodes in the Kubernetes clugter should run a contamers:
. - name: monitoring-agent
particular DaemonSet. Thig allows you to restrict the execution of the DaemonSet to specific nodes Only on nodes that have this image: monitoring-agent
label, a pod of the DaemonSet nodeSelector:
) N Drive: ssd
type is automatically created
selector:
what ig the best way to test a DaemonSet on a limited number of nodes without conguming too many resources from the customer’s service?| matchLabels:
app: monitoring

One approach could be to create a separate namespace with a ResourceQuota that limits the amount of resources that can be used by the C Z
DaemonSet. This will ensure that the DaemonSet does not consume too many resources from the customer's gervice > The selector section specifies the label
selector used to identify which pods

are managed by the DaemonSet

daemon pod | | daemon pod | | daemon pod

] Remove a node:
DaemonSet automatically terminate the corresponding pod

12

Add a new node:
DaemonSet automatically create a new pod on the node

Static Pod

A static pod i a pod that ie managed directly by the kubelet on a specific node, rather than by the Kubernetes AP server. A static pod ie defined by a YAML manifest file that ie placed
in a specific directory on the node, and the kubelet monitors that directory for changes to the manifest file

The containers come up statically, and their manifest file is located in the directory - Thig means that the Kubernetes components, such as the APl gerver,
controller manager, and scheduler, are started as containers uging pre-defined manifeste located in the /ete/kubernetes/manifests directory

w Pod ||Pod |[Pod ||Pod
:\ Kube
StaticPodPath is a direcfory pafh where N kube-api etcd scheduler | | control-manager

static pod manifests are stored on a node GentEmer RUmiime Egine
/var/lib/kubelet/<configuration>.yam| Path: staticPodPath $ kubectl --namespace kube-system get pods -0 wide

= S — = NAME READY STATUS RESTARTS AGE [NODE
-)) etcd-kubemaster-1 /1 Ruming 4 6d2h 192.168.100.11 kubemaster-1
staticPodPath: ’ 'E

kube-apis

-kubemaster-1 1/1 Running 3 6d2h 192.168.100.11 kubemaster-1

kube-api etcd scheduler Kube
control-manager

kube-controller-manager-kubemaster-1 11 Running 3 6d2h 192.168.100.11 kubemaster-1

Node kube-scheduler-kubemaster-1 11 Running 3 6d2h 192.168.100.11 kubemaster-1

To delete a static pod in Kubernetes, you can either delete its corresponding manifest file from StaticPodPath or move the manifest file file to another path. Use the following command to remove the manifest file:

ifoat

] Replace <static-pod-manifest.yaml> with the fil of the iated with the static pod you want to delete.

[sudo rm /etc/kubernetes/manifests/<static-pod-manifest.yaml>

After performing either of thege operations , the kubelet running on the node will detect the change in the static pod directory. It will stop managing the static pod aseociated with the deleted or moved YAML file,
and Kubernetes willinitiate the termination process for that pod.

Created by the kubelet Created by Kube-API server
Deploy Control Plane components ag static pods | Deploy MonitoringAgents, logging Agents on nodes
ignored by the kube-gcheduler

Metrics Server

The Metrics Server ic a component of Kubernetes that provides container resource metrics for built-in autosealing pipelines. It collects resource metrics from Kubelets and exposes
them through the Metrice APl in the Kubernetes AP server. These metrics can be used by the Horizontal Pod Autoscaler and Vertical Pod Autoscaler for autosealing purposes

2 Expose metrics
/\ @

V5
exphoe metrios Kibelet) cAdvVisor cAdvisor (short for “Container Advisor")is a component of the kubelet

that i¢ respongible for collecting and monitoring performance metrics
l.collect metrice for containers and pods running on a node in a Kubernetes cluster

Pod |[Pod
Node

[Apl provided by the kubelet for digcovering and retrieving per-node summarized state available through the /metrics/resource endpoint]

Master Nodes

kubect| top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

node1 50m 5% 983Mi 49% [The Metrics Server aggregates metrics such a¢ CPU and memory usage and stores in memory]
node2 47m 4% 1043Mi 52%

$ kubectl top pod

NAME CPU(cores) MEMORY (bytes)
pod1 Oom TOMi

pod2 m 100Mi

Autoscaling

Autoscaling refers to the ability of the Kubernetes cluster to automatically adjust the number of running instances of a specific workload or application based on the current
demand or load. Autosealing helps to ensure that there are enough resources available to handle the workload while aleo optimizing resource utilization.

Kubernetes provides two types o

f autoscaling mechanisms:

B Morepods N
Horizontal Pod Autosealing (HPA) allows you to automatically scale out your application by adding or removing replicas
baged on regouree utilization metries such ag CPU utilization or custom metrice. This engures that you have the necegsary
resources to handle increased traffic or load without over-provisioning resources and incurring additional costs .
o Podl Pod2 Pod3
Sealing out, also known as horizontal sealing, is the process of adding more replicas of a Deployment or ReplicaSet to handle an increase in traffic or load
Before HPA gealing After HPA scaling
kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2
metadata: s M;\Mﬂu Server " | apiVersion: apps/v1
name: php-apache Thig specifies the target 1 + : 2.caleulate the Replicas :_“r::; d[;et;a)\‘oy ment
namespace: dev Deployment for the HPA name: php-apache
spec: namespace: dev
scaleTargetRef: / Pod! ~~~Pod2™ _"Pod3 (.Query for metrice spec:
kind: Deployment - g Horizontal Pod Autoscaler selector:
name: php-apache Deployment ‘ matc»leabels:
apiVersion: apps/v1 ReplicaSet Qeall rel I:ar;- ﬁhp?apa':he
minReplicas: 3 minimum and maximum number of R“‘“‘:’“‘" Cortroher 3.scale the app to desired replicas te?npla{e:
maxReplicas: 20 replicas for the Deployment metadata:
metrics: labels:
- type: Resource HPA uses the metrics server to collect the metrics data and then uges the sealing Spec’f’": phogbache
resource: algorithm to caleulate the new number of replicas needed baged on the current load containers:
MEITEE Eol - name: php-apache
target:

type: Utilization
averageUtilization: 50
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 40
behavior:
scaleUp:
policies:

periodSeconds: 30
type: Percent
value: 100
periodSeconds: 30
selectPolicy: Max
stabilizationWindowSeconds: 40
scaleDown:
policies:
- type: Pods
value: 4
periodSeconds: 10
- type: Percent
value: 10
periodSeconds: 10
selectPolicy: Min
stabilizationWindowSeconds: 5

The metrice section defines the metrics that the HPA uges to scale the Deployment. In this case, two metrics are specified: CPU utilization and memory utilization. For
each metric, the HPA calculates the average utilization across all pods over a certain period of time and compares it to the target utilization. If the actual utilization
exceeds the target utilization, the HPA increases the number of replicas. If the actual utilization falls below the target utilization, the HPA decreages the number of
replicas. By using multiple metrics, the HPA can make more informed scaling decisions

The behavior section defines the sealing behavior for the HPA. In this case, the HPA uges two policies for sealing up and two policies for scaling down. The Pods
policy specifies the number of replicag to add or remove, while the Percent poliey specifies the percentage of replicas to add or remove. By using both policies, the
HPA can scale up or down more quickly or slowly, depending on the workload. The selectPolicy field specifies how the HPA should ehoose between the Pods and
Percent policies. In this case, it's set to Max, which meang that the highest value of the two policies will be used for sealing up, and the lowest value will be used for
sealing down. The stabilizationWindowSeconds field specifies the number of seconds that the HPA should wait before it starts sealing again after a sealing event.
This helps to prevent rapid scaling, which can cause instability in the cluster

The Pods policy specifies that the HPA should add 5 replicas every 30 seconds, while the Percent poliey specifies that the HPA should add 100% replicas every 30 seconds

2
69‘\‘\\? NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
\(J}v‘\/‘\ php-apache Deployment/php-apache 40%/40%, 20%/50% g 20 3 1d
Max(5,3)
i</ \| NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
100%(3pedl | php-apache Deployment/php-apache 30%/40%, 15%/50% 3 20 8 1d

ports:
- containerPort: 80
resources:
limits:
cpu: 500m
requests:
cpu: 200m
apiVersion: v1
kind: Service
metadata:
name: php-apache
namespace: dev
labels:
run: php-apache
spec:
ports:
- port: 80
selector:
run: php-apache

The Pods policy specifies that the HPA should remove 4 replicas every O seconds, while the Percent policy specifies that the HPA should remove (0% replicas every [0 seconds

HPA ig designed to automatically scale the number of replicas of a deployment or a replica set based on observed CPU utilization, memory

utilization, or custom metrics. This makes it well-suited for statelese workloads that can be easily scaled horizontally by adding more replicas

Vertical Pod Autosealing (VPA) allows you to automatically seale up or down the recource requests and limits of containersin a Pod baged on actual resource usage. This ensures
that each Pod hag the necessary resources to handle the workload efficiently without wasting regources

Sealing up, also known ag vertical scaling, is the process of increasing the resources available to each replica of a Deployment or ReplicaSet to handle an increase in demand

kind: VerticalPodAutoscaler
metadata:
name: php-apache
namespace: dev
spec:
targetRef:
apiVersion: "apps/v1"
kind: Deployment
name: php-apache
updatePolicy:
updateMode: "Auto"
resourcePolicy:
containerPolicies:

- containerName: "*'
mode: "Auto"
controlledValues: "RequestsAndLimits"
minAllowed:

cpu: 10m

memory: 5Mi
maxAllowed:

cpu: 200m

memory: 500Mi
controlledResources: ["cpu", "memory"

limits of the containers in the pods.

requests and limits baged on the pod's usage.

-

kind: VerticalPodAutoscaler
metadata:
name: php-apache
namespace: dev
spec:
targetRef:
apiVersion: "apps/v1"
kind: Deployment
name: php-apache
updatePolicy:
updateMode: "off"

there are two ways to trigger VPA in k8s: automatic and manual,you can set
the updatePolicy field to Auto for automatic sealing or Off for manual sealing

Il Because of the updateMode field in is set to "Auto", the VPA Updater component will automatically update the resource requests and

targetRef: The reference to the target workload object that the VPA should adjust. [n this case, it's a deployment with the name php-apache
updatePolicy determines how frequently the pod resource requeste and limit should be updated. In this case, it's set to "Auto”, which means the VPA
will automatically update the resource requests and limite based on the pod's usage
resourcePolicy defines the resource requests and limits for the containers in the target workload. In this case, there is one container policy defined
containerlame: The name of the container to apply the policy to. In this cage, it's set o *, which means the poliey applies to all containers in the target workload
mode determines how the resource requests and limits are set. In this case, it's set to "Auto”, which means the VPA will automatically adjust the resource

controlledValues: The valueg that the VPA is allowed to set for the resource requests and limits. [n this case, it's set to “RequesteAndLimits", which
means the VPA can adjust both the resource requests and limits.
The minimum resource request and limit values allowed for the container are set to 10 milliCPU and 5 MiB of memory. The maximum resource
request and limit values allowed for the container are set to 200 milliCPU and 500 MiB of memory
"7 | controlledResources: The resources that the VPA ig allowed to adjust. In this case, it's set to both CPU and memory.

Containe

Cpu: 25m
Memory: 262144k
Target:
Cpu: 163m
Memory: 262144k
Upper Bound:
Cpu: 10173m

Memory: 2770366988

Pod!
Before sealling

UPA Here, the UPA is sealing the

cpu and mem of pod! opu2

mem:26

(ainersion: apps/v1

=
Becauge of the updateMode field in is set to "Off", the VPA Updater component will not lly update the resource requests and limits of the
containers in the pods. [n this cage, you will need to manually update the resource requests and limits of the pods when necessary
To manually adjust the resource requests and limits, you can update the deployment or statefulset object that the VPA is targeting
kubectl deseribe vpa d can provide r dations for the recource requeste and limite of containers based on the resource
ugage metrics collected by the VPA controller
kubectl -n dev get vpa
NAME MODE CcpPU MEM PROVIDED AGE pA components
php-apache off 163m 262144k True 2m7s 4Dod R D P
J ~-0¢ Resouree VPA Updater
\ R, Aatic P
7 Bet the Pod Resource UPA Ad

: The minimum amount of CPU and memory that the container
should have to meet the resource utilization targets

Target: The target amount of CPU and memory that the container should
have to achieve the desired resource utilization levels

Upper Bound: The maximum amount of CPU and memory that the container can use

1. Configure VDA

Controler

3 provides Pod Resource
Recommendafion oA
2 Read confias L R d
DA & it wil compute Readpod Resource
Utilization Metrice

etrics Server
H s Monitors Pod R Utilization Metri

Pod!
After scalling

cpu:d
mem:66

kind: Deployment
metadata:
name: php-apache
namespace: dev
spec:
selector:
matchLabels:
run: php-apache
replicas: 1
template:
metadata:
labels:
run: php-apache
spec:
containers:
- name: php-apache
ports:
- containerPort: 80
resources:
requests:
cpu: “20m”
memory: “200Mi”
limits:
cpu: “500m™
memory: “1Gi”

VDA i well-guited for stateful workloads

Deployment

5 Terminate the pod N

Pod
Cpu: “500m”

8. Apply pod spec
adding opu"250m”

Configure application } 18

Kubernetes provides several ways to configure applications, including using ConfigMaps, environment variables, and Secrets.

ConfigMaps are Kubernetes resources that can be used to store configuration data askey-value pairs: You can create a ConfigMap with the desired configuration data, and then
reference it in your Deployment or Pod specification using the ‘configMapKeyRef field or mount it directly to the pod.

You can create a ConfigMap using the ‘kubect create configmap’ command, or by defining a YAML file.

apiVersion: v1 :Set ;r e
. . lescribe cm -conl
kind: ConfigMap ! i

metadata:
name: app-configmap

Configmap

apiversion: v1
kind: ConfigMap
metadata:

name: db-config
datat

data:
DB_HOST: "mydbhost"
DB_PORT: "5432"
DB_NAME: "mydb"

AXI6CGFzCZEY
MzQ

How you can use a ConfigMap to store configuration data

I T
| Environment Variables | 3 Configuration Files M Command-Line Arguments
I You can store environment variables in a ConfigMap I You can store configuration files in a ConfigMap and You can store command-line arguments in a ConfigMap
| and use them to configure your application (7] | mount them ag volumes in your container and use them to configure your application
(A
e (o A apiVersion: v1
apiVersion: v1 N
- kind: Pod
kind: Pod
metadata:
metadata:
name: mypod
name: mypod)
spec:
spec: i
: containers:
EE=R containers:

- name: mycontainer
image: myimage
command: ["/bin/myapp"]
args: ["--config", "/etc/myapp/config.yaml"]
volumeMounts:

- name: mycontainer
image: myimage
volumeMounts:

- name: config-volume

= mountPath:/etc/config 6o) . .
define a volume named 'config-volume' that maps to the ‘app-configmap' volumes: - name: config-volume apiVersion: v1
we @e: -V . .
mountPath: /etc/mya Tk 1
- name: config-volume /etc/myapp/ kind: ConfigMap

ConfigMap using the ‘configMap' field. We then mount this volume into the

configMap: pollimess metadata:
tainer uging the ‘'volumeMounts' field, which specifies that the volume i) - name: config-volume name: my-configmap
. i . name: app-configmap ¥ . 8
should be mounted at the path '/ete/ config'in the container _ J configMap: data:

name: my-configmap config.yaml: |
setting1: valuel
setting2: value2

Now, any configuration files that are stored in the 'app-configmap’ ConfigMap can be accessed by the application running in the container
at the '/ete/config' path

Environment variables ean be used to pass configuration information to the container, such as database connection stringe or APl keys. You can define environment variables
in the Deployment or Pod specification using the ‘env' field, the 'envFrom’ field, and the 'valueFrom' field

The 'env' field is uged to define individual environment The ‘envFrom' field is used to define environment variables for a the 'valueFrom' field i used to define environment variables for a container

DB_NAME: "payments"

H)
| |
| I
: variables for a container. You can define thename and container based on a ConfigMap or Secret. You can specify the based on a field in another regource, such ag a ConfigMap or Secret. You I
: value of each environment variable using the ‘name’and name of the ConfigMap or Secret using the ‘configMapRef' or can specify the name of the resource and the field using the :
I 'value' fields, respectively 'secretRef fields, respectively ‘configMapKeyRef or 'secretieyRef fields, respectively |
| |
')
(" N
: apiVersion: apps/v1 Efainersion: apps/v1 h Vs ~ l
kind: Deployment kind: Deployment B apiVersion: apps/v1
: metadata: kind: Deployment :
| template: name: myapp |
i metadata: spec: template: i
| labels: replicas: 3 metadata: |
| app: myapp selector: labels: |
| spec: matchLabels: app: myapp |
| containers: app: myapp spec: |
| - name: web template: containers: |
I image: myapp:latest metadata: - name: web :
1 ports: labels: image: myapp:latest V
| - containerPort: 80 app: myapp ports: |
: env: spec: - containerPort: 80 I
| - name: DB_HOST containers: env: I
| value: "il-server2" - name: web - name: DB_HOST |
| - name: DB_PORT image: myapp:latest valueFrom: |
| value: "5432" ports: configMapKeyRef: |
! - name: DB_NAME - containerPort: 80 name: db-config !
| value: "payments" envFrom: key: db-host |
I — - configMapRef: - name: DB_PORT |
| - J | name: db-config valueFrom: |
| _secretRef: configMapKeyRef: |
: (name: db-secrets name: db-config !
: apiVersion: v1 \/ J L key: db-port J I
| kind: ConfigMap I
I metadata: apiVersion: v1 |
| name: db-config kind: Secret The 'name’ field in the ‘configMapKeyRef" field specifies apiVersion: v1 I
i data: metadata: the name of the ConfigMap, and the ‘key’ field specifies kind: ConfigMap i
| DB_HOST: "il-server2" o namg. U EEmEE the name of the key within the ConfigMap to uce ac the metadata: |
- " /pe: Opaque : db-confi
I YBIUR ik i} o paane value for the environment variable pameydbacantl |
| DB_NAME: "payments" data: data: |
|) DB_USER: dXNlcg== db-host: il-server2 |
: DB_PASSWORD: cGFzc3dvemQ= db-port: "5432" I
| |
i '

Secrete are similar to ConfigMaps, but are uged to store sensitive information such as passwords, tokeng or APl keys. You can create a Secret with the desired sengitive information,
and then reference it in your Deployment or Pod specification using the 'secretiCeyRef field.

you can also create a secret by running the command 7
arye@dev: kubect! secrets
Gubectl secret generic db-secret --from-literal=username=myuser --from-literal=password=mypassword) NAME TYPE DATA AGE
default-token-abc12 kubernetes.io/service-account-token 4d
This command will create a secret named db-secret with two key-value pairs: username and password “ kdb-secret Gp;qLTe ------------ 2h
W Tousea seer?f in a pod, g!ou can mom?f it ag To update a secret, you can uge the kubectl edit secret (. arye@dev: kubectl describe secret db-secret
avolume or use it ag an environment variable command or edit the yaml file directly and apply the changes T db=secret
spec:) - Namespace: default
containers: Gubectl edit secret db-secret) Labels: <none>
- name: my-container Annotations: <none>
image: my-image
volumeMounts: Type: Opaque
- name: secret-volume
mountPath: /etc/myapp/secret Data
readOnly: true
volumes: By default, the values of the key-value pairs in a secret are bagse64-encoded to provide a : 16 bytes
- name: secret-volume basic level of obfugeation. To decode the values, you can uge the bage64 command UsemameJeiuyles)
secret:
secretName: db-secret Q__> Q(ubectl secret db-secret -0 jsonpath="'{ I)
-
There are several types of secrets in Kubernetes, including:
| Opaque: Thig is the default secret type in Kubernetes. It can be used to store any arbitrary data and is encoded in base6 4.
2 TLS: This type of secret is used to store TLS certificates and keys. It contains two keys: tls.crt and tls key.
3 Docker-registry: This type of secret ig used to authenticate with a Docker registry. It contains the username and password for the registry.
4 QSH: This type of secret ic uged to store SSH keys. [t containg the private key and the public key.
5 Service account: This type of secret is automatically created by Kubernetes when a service account ie created. It containg a token that can be used to authenticate the service account.

Warning

Kubernetes Secrets use bage6 4 encoding to obfuscate the sensitive data, it i important to note that base64 encoding is not a form of encryption and can be easily decoded

two solutions to solve thig problem

]

Using external encryption toole or key management systeme to secure sengitive you ean use access controls to limit who can access the sensitive data. K8s provides
data before storing it in Kubernetes Secrets can enhance security.(HaghiCorp various mechanigme for controlling access, such ag RBAC and network policies, that
Vault, Azure Key Vault, and AWS Key Management Service) can be used to limit access to sensitive data to only authorized users and applicatione

| Application Lifecycle Management |
initContainer

An init container ig a special type of container that runs before the main container(s) in a pod. The purpose of an init container is to perform some initialization or setup tasks that
are required before the main container(¢) can start running. Init containers are defined in the same YAML file ac the pod specification, alonggide the main container(e). They can be
used fo perform tasks such ag setting up a database schema, downloading necessary files, or waiting for a specific service to become available

[nit containers have their own lifecycle, and they are considered successful if they complete their tagks without error. If an init container faile, Kubernetes will
attempt to rectart it until it succeeds, which engures that the main container(¢) in the pod are not started until the initialization tagks are complete

apiVersion: v1 Example [pOd
kind: Pod ¥
metadata: |[init container]

name: my-webapp-pod I

spec:

initContainers:

- name: redis-setup
image: redis:latest
command: ["sh", "-c"]
args:
=1

redis-cli ping Il exit 1

Restore if L Main container
needed { Sidecar container/-

)

©

The init container uses the Redis image and rung a shell command that performs the following tasks:

redis-cli config set maxmemory 1gb - Check if the Redis server ig running by pinging it rainersion: vl Example 2
redis-cli config set maxmemory-policy allkeys-Iru + Set the maximum memory limit to [gigabyte kind: Pod
redis-cli config set save "" Set the evietion poliey to "allkeys-Iru" fetacatas
containers: Disable automatic snapshots by setting the ¢ licy t mpty stri name:{my=q/-db
- (P WRED icable automatic snapshots by setting the save poliey to an empty string speci
image: my-webapp-image containers:
[PeiEs After completing its tasks, the init container exits and i¢ terminated. The main container = EIIEE TIPES)
- containerPort: 80 . N q o image: mysql:5.7
env: then starte running and serves the web application for the duration of the Pod's lifecycle J—
- name: REDIS_HOST - name: MYSQL_ROOT_PASSWORD
value: redis-service valueFrom:
- name: REDIS_PORT secretKeyRef:
value: "6379" name: db-secrets
— key: password
When the Pod is started, the container rung firet and performs the database migration. Once the K fidCeaiEais:

- name: migrate-db
image: mysql:5.7

command: ['sh', '-c', 'mysql -h ${DB_HOST} -u root -p$
N {DB_PASSWORD} ${DB_NAME} < /migrations/migrate.sql']
Pod lifecycle e
. N . . - name: DB_HOST
Here are the key phaseg in the lifecycle of a Pod in Kubernetes: olie 1200

- name: DB_NAME

migration is complete, the mysql-db container starte and rune the application, which now uses the migrated databage

value: mydb
- name: DB_PASSWORD
Once a pod's containers are scheduled to run on a node, the pod enters the running phase valueFrom:
7 secretKeyRef:

name: db-secrets
‘ ‘ key: password
e >=>->1 volumeMounts:
- name:migrations
m mountPath: /migrations

RN T (volumes:

When a pod is created, it enters the pending phase. During this phase, the - name: migrations

enters name: db-migrations
are pulled from the container registry. The pod remaing in the pending

R
N e ~ configMap:
Kubernetes scheduler assigns the pod to a node and the container images @ Whena iner in a pod completes its task fully, the o

the Succeeded phage and the pod is considered to have completed its task
phase until all of its containers are ready and scheduled to run on a node

N When a container in a pod fails or crashes, the container enters the Failed phase

MULTI-CONTAINER PODs: @ Sidecar Container [o

Sidecar container ig a container that is deployed alongside a main container in a pod . The main container ie typically an application that performs some specific function, while
the sidecar container provides support or complementary functionality to the main container

The idea behind the sidecar pattern is to keep the main container focused on a specific task or functionality, while delegating other
taske to the sidecar container. This allows for more modular and flexible deployment architectures, as the sidecar container can be
updated or replaced independently of the main container

SidecareContainer

App-container

Lifecycle Lifecycle

Although containers inside a pod share a common network and storage, they have independent lifecycles and can be created, updated, and deleted individually <
) p ge, they p !l p Y

important use cases

Logging and Monitoring: A side containers can be uged to collect and forward loge and metrics from the main application container to a central monitoring system
Backup and Recovery: A side containers can be uged to perform backup and recovery operations on the main application container

Service megh: A sidecar container can be used to implement a service mesh such ag lstio or Linkerd. A service mesh provides additional functionality for managing and securing communications between
serviceg running in Kubernetes

One example of how a sidecar container can be used with a database service in a Kubernetes deployment: "0 2 =

The main container ig running a database service and is exposing port 5432 for incoming database connections. kind: ;Od
metadata:
name: db-pod
spec:
containers:
- name: db-container
image: my-database-image

- name: DATABASE_URL

Pod

A sidecar process respongible for periodic ports:
backups of the databage to an 83 bucket - containerPort: 5432

volumeMounts:
Amazon
I S3

db-container

Sidecare £
e &)

Storage /var/lib/postgresql/data /backups name: sidecar-container
image: my-sidecar-image
env:

- name: BACKUP_LOCATION

The sidecar container can periodically backup the database to a remote location to ensure data resiliency rd
volumeMounts:
- name: backup-data
mountPath: /backups
The sidecar container is running a seript that periodically backs up the database and stores the backup files in the */backups” directory. |~ |~ command: ["/bin/sh”, "-c" T
The seript is also uging the "pg_dump" command to perform the backup and gzip to compress the backup file. The backup location is specified in : args‘:
the environment variable "BACKUP_LOCATION", which is cet to an 83 bucket. The ccript ic running in an infinite loop and cleepe for 24 houre : il s @
e ;
between each baekup. ' pg_dump -U postgres -h localhost my-database | gzip > /backups/my-
| database-$(date +%Y-%m-%d-%H%M%S).sql.gz; s3cmd put /backups/my-database-
| *.sql.gz "$BACKUP_LOCATION";
: sleep 86400;
| s3cmd put /backups/my-database-*.sql.gz "$BACKUP_LOCATION";
L
volumes:
The two containers are communicating using shared volumes and environment variables. The
, while the sidecar container is using a volume mount called "backup-data” to store its backup files - name: g}acﬁ‘;”’data
emptyDir:

Job & CronJobs }

Job is a type of resource that allows you to ereate and manage a finite or batch process in your cluster. Jobs are commonly used for tasks that need to be run once or

a few times, such ag data processing, backups, or migrations apiVersion: batch/v1
kind: Job
tadata:
A Job creates one or more Pods and will continue to retry execution of the Pods until a epecified number mi;n:: Zata-processing—j ob
of them successfully terminate. A pods successfully complete, the Job tracks the successful completions. spec:
When a specified number of successful completions is reached, the task (ie, Job) is complete /f:rf‘:;fl:t:_m't: g
" :
The backoffLimit specifies the number of times k8¢ S .
containers:

should retry the Job if it fails before giving up - GEIIE CEE-FRoeEssay

image: data-processor:v1.4
command: ["python", "process_data.py"]
restartPolicy: Never

CronJobg in Kubernetes are a way to schedule and automate the execution of Jobs on a recurring bagis. A Job is a Kubernetes object that creates one or more Pods to perform
a gpecific task, and a CronJob i¢ a higher-level abstraction that allows Jobs to be scheduled according to a specific time or interval, imilar to the Unix eron utility.

' B oohR apiVersion: batch/v1
Let's say you have a web application that periodically needs to generate reports based on user data. You could ereate a |, """ ™

CronJob that rung a seript to generate the report and then terminates when the report is complete. metadata:
name: report-generation-cronjob
- spec:
Activation time Job will run at the top of every hour .schedu\e: "Q Kok xR
CronJobs jobTemplate:
spec:
template:
v spec:
This will delete the Pod [00 seconds after it finishes ttISecondsAfterFinished: 100
jobTemplate | 7o containers:
_ - name: report-generator
image: my-django-app:v1
env:

- name: DJANGO_SETTINGS_MODULE
value: myapp.settings
command: ["python", "manage.py", "generate_report"]
restartPolicy: Never

CronJobs create Jobs which in turn ereate Pods to run the tagk

Rollout & Rollback

Rollout ie the process of updating a Deployment or ReplicaSet to a new version of your application
Rollback ie performed by updating container with the previous version of the container image

<

’ainersion: apps/v1
kind: Deployment
metadata:

name: nginx-imp
spec:

replicas: 3

selector:

matchLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

- name: nginx
image: nginx:1.17
ports:

- containerPort: 80

[Pod
app:vl.I7

[Pod | [Pod |

Revision | app:vlI7 app: vl.I7

rollout

|
|
|
|
v

Create a new

; Pod
version Reyigion 2 [
\~

app:vl.I8

Pod | | Pod |
app:vl.I8 app:vl.I8

rollback

|
|
|
|
\

Pod
app: vlI7

[Pod
app: vlI7

Pod |
app: vlI7

Reuvigion |

When you perform an upgrade to a deployment, Kubernetes creates a new replica set with the updated container image and
configuration, and gradually replaces the pods managed by the old replica set with the pods managed by the new replica set

Deployment ‘—Cl’gti

ReplicaSet-1

rollback

ReplicaSet-2

After adding the 'strategy’ section to the YAML
file and applying it to the Kubernetes cluster uging
the 'kubect! apply' command, Kubernetes will
start a RollingUpdate for the Deployment

’ainersion: apps/vi
kind: Deployment
metadata:
name: nginx-imp
spec:
replicas: 3
selector:
matchLabels:
app: nginx
T strategy:
type: RollingUpdate
rollingUpdate:
T maxUnavailable: 1
maxSurge: 1
template:
metadata:
labels:
app: nginx
spec:

Gubectl apply -f deployment.yaml)

containers:
- name: nginx

Update image to nginx:[.2 <

ports:

During a Rolling update , the 'maxUnavailable and 'maxSurge’ settinge determine the rate at which replicas are replaced, ensuring that the application remains available and stable throughout the update process

[

|

|

|

|

|

|

|

|

|

|

|

|

/ image: nginx:1.18 |
- |
- containerPort: 80 |
|

|

|

|

|

|

|

|

|

|

|

|

‘maxUnavailable’ specifies the maximum number of replicas that can be unavailable during the update process. This parameter ensures that the application always has a minimum number of replicas available, even during the
update process. For example, if you set 'maxUnavailable’ to [, Kubernetes will not terminate more than one replica at a time during the update process, ensuring that the application always has at least one replica available.

'maxSurge’ specifies the maximum number of new replicas that can be created during the update process. Thig parameter ensures that the update process is efficient and does not overload the system with too many new replicas
at once. For example, if you set 'maxSurge’ to [, Kubernetes will not ereate more than one new replica at a time during the update process, ensuring that the application remaine stable and functional throughout the update.

you can also run a rolling update in Kubernetes using the ‘kubectl' command

3 To perform a rolling update using the 'kubectl command, you need to have a Deployment defined in Kubernetes

Gubectl create deployment nginx-imp —image nginx:1.17 —replicas 3 D create a Deployment with the 'nginx:L.17"
J image and three replicas

[use the 'set’ command in 'kubect!' to update the image used by the Deployment
After executing the ‘set’' command, Kubernetes will start
;(/7 arolling update for the 'nginx-imp’ Deployment =

@ You can monitor the progress of the rolling update by running the following command

Q(ubectl Llf you want to pauge the rolling update at any
time, you can uge this command:

Gubectl image deployment/nginx-imp nginx=nginx:1.18

status deployment/nginx—imp)

Q(ubectl rollout pause deployment/nginx-imp)

3 [f you want to undo the update and roll back to the previous version, you can use the following command: — — —>

Q(ubectl

@ You can use kubectl rollout history' command to view the revigion history of a Deployment, including the
rollout status, the version of the Deployment, and the date and time of the revision

undo deployment/nginx-imp)

kubect! history deployment nginx-imp
deployment.apps/nginx-imp

pod name-Replicaset id-pod id

kubect! get pod,rs

NAME
pod/nginx-imp-f32gt99mnj-ihd7t

pod/nginx-imp-f32gt99mnj-ki34f
NAME

replicaset.apps/nginx-imp-f32gt99mnj
replicaset.apps/nginx-imp-ht5g34kpz2

READY STATUS RESTARTS AGE
71 Running 0 10m
11 Running 0 10m

DESIRED CURRENT READY AGE
1 1 1 10m
0 0 0 12m

0ld Replicaset

New Replicaset

kubectl get pod,rs

NAME
pod/nginx-imp-ht5g34kpz2-ihd7t

pod/nginx-imp-ht5g34kpz2-ki34f
NAME

replicaset.apps/nginx-imp-f32gt99mnj
replicaset.apps/nginx-imp-ht5g34kpz2

READY STATUS RESTARTS AGE
(Al Running 0 10m
71 Running 0 10m

DESIRED CURRENT READY AGE
0 0 0 14m
1 1 1 16m

To change the ' CHANGE-CAUSE' annotation for a Deployment in Kubernetes, you can uge the 'kubect| annotate’ command

REVISION CHANGE-CAUSE
1 kubectl create deployment nginx-imp --image=nginx:1.17 --replicas=5

4 Q(ubectl rollout undo deployment/nginx-imp

)

2 / Q(ubectl annotate deployment nginx-imp kubernetes.io/change-cause="updated to nginx 1.19" --overwrite)

L—/\7 The 'CHANGE-CAUSE' field in the kubect! rollout history' output is an annotation that
ie added to the Deployment when it is updated using the kubect! set' command
Thig annotation can be useful for tracking echanges and providing
additional information about the update process

deployment.apps/nginx-imp
REVISION CHANGE-CAUSE

2

kubectl rollout history deployment nginx-imp

1 kubectl create deployment nginx-imp --image=nginx:1.17 --replicas=3

Some of Deployment strategies to perform rollouts

=

=

=

Rolling updates are performed by gradually replacing
instances of an old version of a container with ingtances
of a new version. (default deployment strateqy)

Before deployment After deployment

Recreate strategy deletes all the old Pods
before creating new ones. This can result in
some downtime for your application

Before deployment After deployment

[V1.0

|(@e =]

Blue/Green strategy creates a new set of Pods running
the updated version of your application alongside the old
set of Pods running the previous version

Before deployment

[V1.0
[V2.0 standby] [V1.0 standby]

After deployment

V2.0

Canary strategy updates a emall percentage of Pods with
the new version of your application, while the rest of the
Pods continue to run the previous version

Before deployment

[V1.0

After deployment

] V0

Self-Healing Application J

Self-healing applicationg in Kuberneteg are applicationg that can detect and recover from failures automatically without human intervention. Kubernetes provides several
mechanigme to enable self-healing, including probes, replica sete, and deployments. These components together ensure that the desired state of the application ie maintained,
even in the face of failures, updates, or changes in the environment.

Probes play a vital role in enguring the health and availability of pods and containers running in a Kubernetes cluster. By || The main idea behind ReplicationControllers and Deployments in Kubernetes is to
periodically checking the health of containers, Kubernetes can take appropriate actions such as restarting containers, maintain a degired number of pod replicas running at any given time. n other words,

marking pods as ready to receive traffic, or delaying traffic until an application inside a container has started successfully ||they ensure that a particular pod (or set of pods) always remains up and running.

Kubernetes provides three main types of probes to check the health of Pods %1%

S

The kubelet is responsible for running probes

on containers to check their health

— X Liveness probee
Kubernetes uses liveness probes to know when to restart a Container. For
example, a liveness probe could catch a deadlock, where an application is
running, but unable to make progress. Restarting a Container in such a

These probes let Kubernetes know when your application has
started. If such a probe is configured, it disables liveness and
readiness checks until it succeeds, making it useful for slow-

Kubernetes uses readiness probes to know when a Container is ready to start
aceepting traffic. A Pod is considered ready when all of its Containers are
ready. One use of thig signal ig to control which Pods are used as backends for

state can help to make the application more available despite bugs. Services.

. When a Pod i¢ not ready, it is removed from Service load balancers.

Pod Condition : Pod scheduled
Pod Phase : Pend!

Startup

Probe
success?

No

I'No

<— Is last attempt —
Yes No

Liveness
Probe
success?

Liveness FAILURE

NO TRAFFIC

Is last attempt —>
Yes

Readiness
Probe
success?

Wait
periodSeconds

I'No

Startup FAILURE

Pod STOPED

_____ Wait
periodSeconds

I'No

Is last attempt —>
Yes

Readiness FAILURE

o

NO TRAFFIC

The probes can be implemented in several ways

Container: Waiting

}

starting containers.
for
Startup Probe

Successul Probe Rep!
SuccessTreshold=1

ly

Start Readiness & liveness Probes.

InitialDelaySeconds
for InitialDelaySeconds
Liveness Probe for
Readiness Probe

‘Successul Probe Reply.
}Denudsecnnds

Successful Probe Reply

‘Successiul Probe

periodSeconds:

Pod Conditon Not Ready (duoto Ready Probe)

ng

Successful Probe Reply

periodseconds
periodSeconds

‘Successiul Probe Reply.
‘SuccessTreshold=3

Container: Runring Pod Phase : Rur

Successul Probe Reply
SuccessTreshold=3

Pod Condition : Ready
Pod Phase : Running Container: Running

HTTD checks: Kubernetes sends an HTTP request to the specified path

of your application. If the application responds with a success status code
(200 - 399), the probe ie successful. Otherwise, it's congidered a failure
N

b
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-container
image: my-image

livenessProbe:
httpGet: The "initialDelaySeconds" field indicates that
path: /healthz k8¢ should wait 30 seconds before checking
port: 8080 the container's health for the first time

initialDelaySeconds: 30
periodSeconds: 10

The Liveness Probe is configured to use an HTTP GET request to check
the container’s health. The request i gent to the path /healthz" on port

_ The “periodSeconds" field indicates that
Kubernetes should check the container's

health every [O seconds thereafter

8080, which is where the container exposes its health check endpoint

We use the tepSocket handler to check the container's health by
trying to open a TCP connection to port 8O8O0. If the connection
is successful, the Liveness Probe is considered successful

TCDP checks: Kubernetes tries to establish a TCP connection Exec checke: Kubernetes executes the specified command within
to your application on the specified port. [f it can establish a your container. If the command returns an exit status of O, the
connection, the probe is successful. Otherwise, it's failed. probe i successful. Otherwige, it's considered a failure.
(ainersion: vl h (ainersion: v1)
kind: Pod kind: Pod
metadata: metadata:
name: my-pod name: my-pod
spec: spec:
containers: containers:
- name: my-container - name: my-container
image: my-image image: my-image
ports: livenessProbe:
- containerPort: 8080 exec:
livenessProbe: command:
tcpSocket: - /bin/sh
port: 8080 =@
initialDelaySeconds: 15 - /usr/bin/custom-script.sh
periodSeconds: 10 initialDelaySeconds: 30
failureThreshold: 3) periodSeconds: 10

This probe runs a seript inside the container. If the
seript terminates with O ag its exit code, it means
the container is running as expected

Example: a Web Application with Readiness Probe

apiVersion: apps/v1
kind: Deployment

If a container fails the Readiness Probe check, it will be removed from the list of endpoints used by the service a¢ a backend.

httpGet:

path: /healthz

port: 8080
initialDelaySeconds: 10
periodSeconds: 5
failureThreshold: 3

If the deployment fails the probe check three times in a row, the kubelet will restart the pod (K describe deploy

metadata: God help it This ensureg that the service does not send requests to the container until it becomes ready to receive them again.
name: web-app
S . = O e » - (-)
spec.v (kubectl describe svc web-service apiVersion: v1
replicas: 3 kind: Service
selector: Container Container Container Name: web-service metadata:
matchLabels: Namespace: default name: web-service
app: web-app Labels:) <none> spec:
template: Annotations: Selector: app=web-app Selector:
Type: ClusterlP)
metadata: - 10.0.0.1 app: web-app
. Web-app . b ports:
labels:) |Port: http 80/TCP -
app: web-app TargetPort: 8080/TCP - name: http
spec: kubect! deseribe pod ... Endpoints: 10.0.0.2:8080, 10.0.0.3:8080, port: 80
containers: s Session Affinity: None targetPort: 8080
- hame: web-container Conditions: Conditions: b Events: <none> type: ClusterlP
' ¢ Type Status Type Status & J
image: my-web-image - L
ports: ::iti:hzed TruTe Inmzhzed Truel
) . eady Tue Ready False
- containerPort: 8080 ContainersReady True ContainersReady True
readinessProbe: PodScheduled ~ True PodScheduled True

failureThreghold i a parameter that can specify how many congecutive failures are allowed before the container i considered to have failed the probe.

| Cluster maintenance | 23

Node maintenance]

Node maintenance in Kubernetes refers to the process of temporarily taking a node out of the cluster to perform maintenance tasks such as upgrading the operating system,
applying security patches, replacing hardware or performing other tacks that require the node to be offline. During this time, any workloads running on the node will be evicted
and rescheduled onto other nodes in the cluster to ensure high availability and minimal digruption to users.

up

© Newnode
Nodes need to be regularly updated and

maintained to keep the cluster healthy

sched

|
Reschedule ;New node

Master Worker node Worker node

Other nodes

Steps to perform maintenance on a node in Kubernetes

To avoid any service disruptions during node maintenance, it's important to ensure that Once the drain command completes and all the pods have been successfully ’ﬁot adding a replacement node may cause the cluster to become l
your Kubernetes cluster hag sufficient resources and capacity to handle the workload rescheduled onto other nodes, you can perform the required maintenance | unready, especially when there are a large number of pods running |
of the evicted pods. If a node ic added to the cluster, it increases the overall resources taske on the drained node. This may include updating the operating system, Ion the node being taken down and insufficient resources available |
available for scheduling pods, reducing the chances of service digruptions. performing security patches, or any other necessary maintenance activities on the remaining nodes to allocate to those pode :

(1) (kubectl cordon kubeworker-1)

Add a Node >~(Cordon }—>~{ Drain }—>~(Perform maintenance tasks ’>>~| UnCordon |»>~{ Remove added Node}
9 kubectl drain kubeworker-1

@ Start node updating

Node

maintenance
steps

When maintenance needs to be performed on a
node, it should be cordoned ag the first step

o(kubectl uncordon kubeworker-1)

After the maintenance tasks are completed, the node can be brought back online and added back to
the cluster. Kubernetes will automatically detect the new node and begin scheduling pods on it again.
It'simportant to note that when a node is added back to the cluster, Kubernetes will not automatically

The cordon command marks a node ag unschedulable. It prevents The drain command is used to gracefully eviet pods from the
new pods from being scheduled on the node while allowing existing node that i¢ undergoing maintenance. [t triggers the rescheduling
pods to continue running. By running kubectl cordon <node-name>, | | of active pods onto other available nodeg in the cluster. Running

youiindicate that the node is entering maintenance and should not kubectl drain <node-name> initiates the process of moving pods | | move all the evicted pods back to the node. Instead, the scheduler will treat the node like a new node
receive any additional workload. off the node, ensuring that they are not abruptly terminated. and schedule new pods onto it based on the available resources and workload requirements
Cordon Drain UnCordon

ro ()
(Pod] { Pod][Pod] (Pod] [Pod](Pod]

Ready Ready Soheduling Disabled Ready Scheduling Disabled Ready Ready Ready

Reserving resources for the operating system and the kubelet in Kubernetes is erucial for maintaining stability

Kubernetes nodes can encounter resource starvation igsues when pods consume all available capacity on a node, resulting in an ingufficient allocation of resources for eritical system daemons
and processes that drive the functioning of the operating system and Kubernetes infrastructure. This imbalance can subsequently lead to cluster ingtability and performance degradation.
configuring kubelet resource regerves is a good way to prevent regource starvation issues on Kubernetes nodes.
Here are some ways kube and system resource regerves can help:

Eviction Thresholds = —f — — — —+ _ __ __ __ _|

Thig regerves resources for Kubernetes system daemons like kubelet, container runtime, node problem detector, ete.

Prevents starvation of critical components.

system-reserved| Reserves resources for the underlying node's kernel and system services. Leaves room for OS processes.
Kube Reserved Kubelet

The kubelet will eviet pods when available resources drop below this threshold to maintain reserves

System Reserved

Allocatable

Pods

T --kube-reserved=cpu=500m,memory=1Gi
To configure thege regerves, you can get flage on the kubelet service like: Sl S g ——

--eviction-hard=memory.available<500Mi

SPOF

Single Point of Failure (SPOF) refers to a component or resource that, if it fails, can cauge a complete or partial outage of the entire system. This means that the failure of a single
component can result in the unavailability or degraded performance of the overall Kubernetes cluster. ldentifying and mitigating SPOFe is cerucial for enguring high availability and
reliability in a Kubernetes environment. Here are some recommendations for ensuring the minimum amount of SPOFe for eritical Kubernetes components:

Worker Nodes - No specific minimum, but have at least 3
nodeg in a cluster and spread them across zones.

eted - For production, need at leact 3 eted instances, 5 for better
redundancy. Should be co-located with control plane nodes.

Kubernetes Control Plane - Need at leact 3 master nodes spread across availability
zones. Thig ensures high availability of APl server and controller manager.

Cluster Networking - Should have high availability at the network
level - multiple switches, routers ete. Avoid SPOF in networking.

Data Storage - Use cluster-wide storage like
GlusterFS, Rook, OpenEBS with replication.

Load Balancers - Front load balancers with at
leact 2 instances or uge external LB gervices.

[ngress Controllers - Need 2+ ingress controllers like
Nginx for redundancy. Configure with a load balancer.

Cluster upgrade

[t's important to keep k8s components up-to-date with the latest stable version to ensure that the cluster i¢ secure and stable. Here are the ceveral methods for upgrading a k8s cluster:

Kubeadm: Kubeadm is a popular tool for bootstrapping and managing Kubernetes clusters, particularly | |Kubernetes Toole: Various Kubernetes deployment tools such as Kops, Kubespray, Rancher, and
for self-provisioned clusters. Kubeadm provides commands like ‘kubeadm upgrade plan” and kubeadm others provide their own mechaniems for cluster upgrades. These tools typically offer automation
upgrade apply” to systematically upgrade the control plane and worker nodes. It simplifies the process of | |and specific commands for upgrading the cluster. For example, Kops provides the ‘kops upgrade
upgrading kubeadm-provigioned clusters. cluster” and kope rolling-update” commands to handle the upgrade process.

Cloud Provider Upgrades: Managed Kubernetes services offered by cloud providers, such as Blue-Green Deployment: The blue-green deployment approach involves creating a parallel “green” cluster
Amazon EKS, Azure AKS, and Google GKE, often handle control plane upgrades transparently.| |with the desired version while the existing "blue” cluster is still running. Once the green cluster ig ready, you
The cloud provider automatically manages the upgrade process, including the control plane switeh traffic over to it, ensuring minimal downtime. After verifying the green cluster's stability, you can
components. As a user, you only need to update the node machine images to the desired version. | |delete the old blue cluster. This method allows for a smooth transition and rollback option if any issues arige.

Kubernetes does support the last three minor versions for 9 monthe and provides patches for security and bug fixes during that time

[V.22]___(Vv 1.23]———(Vv 1.24)___(V125 __(Vv 1.26]

Kubernetes releaseg ite versiong
baged on semantic versioning

un-Supported = 0 o——————— Supported — — — ————- Latest The maximum amount of difference that can exict between k8¢ components V 1 o o 3
Control plane components: O versions (identical) MAJOR PATCH
when updating Kubernetes it is generally recommended to update only one | For production Kubernetes clugters, the general recommendation is to - kubelet/kubectl: Up to 2 minor versions behind Features Bugfixes
minor version at a time, Minor version updates are meant to be backwards | gtay within [minor version of the latest stable Kubernetes release. - eted: Up to [minor vergion behind AP server Functionalities

compatible. So going from [.x to [.x+1 should work smoothly

How to Upgrade Kubernetes Cluster Using Kubeadm?

Step [: Prepare for the Upgrade recommended to perform upgrades on a test cluster before Stepl: Determine which version to upgrade to
Bef L upgrading a production cluster to ensure that the process ETCDCTL_API=3 etcdctl snapshot save snapshot.db \ My current version i .25.3 and we will be upgrading it
efore upgrading, it is important to review the . . = ints=
pgrading, P a. goes smoothly and without any issues CpElite=HNERAS \ to one higher version, ie, .26.7
releage notes and documentation for the target --cacert=/etc/kubernetes/pki/etcd/ca.crt \
A . - q . . --cert=/etc/kubernetes/pki/etcd/server.crt \
Kuberneteg version. Check for any specific Back up any eritical data and configurations, including eted —key=/etc/kubernetes/pki/etcd/server.key # Find the latest .26 version in the lst.
requirements or considerations. data, you maybe need to roll back the upgrade. # 1t should look like .26.x-00, where x s the latest patch

Step 2: Upgrade Control Plane Nodes

I
Upgrade the control plane components (APl server A.Drain the control plane node] —(C. Plan the upgrade][D Perform the upgrade] E.Upgrade kubelet and kubectl]
s
controller manager, and seheduler) and eted (if [kubectl drain <control-plane-node-name> ~ignore-daemonsets] sudo kubeadm upgrade plan (sudo kubeadm upgrade apply v1.26.7] apt-mark unhold kubelet kubectl
icabl) b sudo apt-get upgrade -y kubelet=1.26.7-00
applicable) on each control plane node one by on Upgrade to the latest version in the v1. series: sudo apt-get upgrade -y kubectl=1.26.7-00
I iok:"PDNENT C'J]R’;i"‘; T:\I;(SE; sudo apt-mark hold kubelet kubectl
. . . . S s st gouuant o pte o ube-apiserver v1.253 v1.26.
Tgpufallg, thie [nvolves running a serieg of commands [B.Upgrade kubeadm e T] ot N
with kubeadm to upgrade the control plane y kube-scheduler V1253 v1.267
k P9 P sudo apt-mark unhold kubeadm kube-proxy v1.25.3 v1.26.7 F. Restart kubelet and Uncordon the node
components. sudo apt-get upgrade -y kubeadm=1.26.7-00 CoreDNS V191 v1.93
sudo apt-mark hold kubeadm eted 3.5.4-0 3.5.6-0 sudo systemctl daemon-reload
C:Analyzes the current state of the cluster and generates a plan for Ve @Em e €131 i (e (b GeRrEii e (Rl Cenents sudo systemctl restart kubelet
CE X The “apt-mark’ command in the operating system can be used to label packages kubeadm upgrade apply v1.26.7
upgrading the control plane components to a newer version of Kubernetes. 5 . . kubectl uncordon <control-plane-node-name>
and update only the operating system without changing thei version.
Step3: Upgrade Worker Nodes
Upgrade the worker nodes one by one. Thig can be done A.Drain the control plane node] —' D.Upgrade kubelet and kubectl]
C.Upgrade the k8s configuration
by draining and cordoning each node, upgrading the (k“bec“ G SRR =S EeEes] apt-mark unhold kubelet kubect! && \
dth doni h d [sudo kubeadm upgrade node) apt-get update && \
necessary components, and then uncordoning the node. | apt-get install -y kubelet=1.27.x-00 && \
B.U de kubeadm. kubel apt-get install -y k 1.27.x-00 && \
The upgrade process for worker nodes typically involves S DLy IS apt-mark hold kubelet kubectl
upgrading the kubelet, kube-proxy, and any other relevant apt-mark unhold kubeadm && \
apt-get update && apt-get install -y kubeadm=1.26.7-00 && \
components. apt-mark hold kubeadm —' E. Restart kubelet and Uncordon the node]
sudo systemctl daemon-reload
sudo systemctl restart kubelet
"All at once: In thie strategy, all worker nodes are upgraded at the same time. Thig approach can be faster than kubect! uncordon <worker-node-name>

Worker nodes other strategies, but it aleo carries the highest rigk of causing downtime if something goes wrong during the upgrade
uparade strategies

“+1/-1": Thig strategy involves upgrading one worker node at a time, starting with adding a new node with the updated Kubernetes version, followed by removing an old node with
the old version. Thig process i¢ repeated until all worker nodes have been upgraded. This strategy minimizes the rigk of downtime while still allowing for a relatively quick upgrade.

“-1/+(": This strategy i¢ similar to "+[/-", but it involves removing an old node first and then adding a new node with the updated Kubernetes version. Thig strategy carries a slightly higher rigk of
downtime because there may be fewer worker nodes available during the upgrade process, which could result in an overload on the remaining nodes and potentially cause them to become not ready

Step 4: Verify Cluster Health Step 5: Update Kuberneteg Objecte

Some Kubernetes objects, such as Deployments or
StatefulSets, may need to be updated to take advantage
of new features or changes in the upgraded version

After upgrading all the control plane and worker
nodeg, you should verify the health of the cluster.

Check the status of the control plane components
using commands like ‘kubectl get nodes” and
“kubectl get pods -n kube-system .

Backup & Restore Methods]

[t's important to regularly back up to ensure that your k8s cluster can be easily restored in the event of a failure or data loge. Additionally, it's important to
test your backup and restore processes to ensure that they are working properly and that you can recover from any issues that may arige.
When designing a backup strategy for a Kubernetes cluster, it's erucial to back up both the application data and the cluster configuration.

Cluster configuration | Cluster configuration includes all the KCubernetes objects and resources that configure your cluster and applications

e N
eted data: The eluster state and metadata in Kubernetes are stored in eted. To Kubernetes manifeste: includes all the Kubernetes objects and resources that configure your cluster and applications.
ensure cluster recovery, it's erucial to back up the eted data. This can be achieved || This includes things like deployments, services, configmaps, and ete.These resources are usually defined as code, for
either by taking periodic enapshots of the eted database or by implementing a example in YAML or JSON files. Because they are code, a good practice is to store them in a version control system like Git.

(backup solution specifically designed for eted, such as etedetl or Velero. Thig gives you a history of changes and allows you to revert to a previous state if something goes wrong.)

[You can backup Kubernetes resources using etedet! command-line } You an backup Kubernetes resources using Velero
apiVersion: batch/v1betal) Once Velero i installed, you can create a backup by running the following command: you can also automate the backup process with Velero
ik Chanlted velero backup create <backup-name> ()
o apiVersion: batch/vibetal

name: etcd-backup ; 5 . kind: CronJob
cvam By default, Velero will back up all resources in all namespaces. If you want to back up only certain namespaces | metadata: o back
; name: velero-
schedule: "0 * * * ** or resources, you can specify them with the --include-namespaces and --include-resources flags, respectively Speac; e velerobackup

jobTemplate:

schedule: "0 * * * *"
spec: [velerc backup create <backup-name> --include-namespaces my-namespace \] jobTemplate:

template: —include-resources deployments,pods spec:
spec: template:
containers: spec:
- name: etcd-backup The BackupController notices the new The BackupController makes a call to the object Contalners

- name: velero

—————————————— Backup object and performe validation. N storage service to upload the backup file. imege:veloro/veleromIR7I0

command:

- /bin/sh P N command:
= Create custom -
c . & ¥
- (user) @ esoiuree - — T~ —>] Kube-apiserver | args:
| S - - backup
ETCDCTL_API=3 etcdctl snapshot save /backup/k8s/etcd-snapshot.db \) Q‘QE B e o s Object storage _ create
_ y uery = .
--endpoints=<ETCD-endpoints> \ Whod il maciid & (service - my-backup
--cacert=/etc/kubernetes/pki/etcd/ca.crt \ volumeMounts:

APl s to create a Backup object
—cert=/etc/kubernetes/pki/etcd/server.crt \ e

--key=/etc/kubernetes/pki/etcd/server.key

- name: cloud-credentials

The BackupController begin the backup mountPath: /credentials

VolumeMounts: process. [t collects the data to back up by R

- name: etcd-certs querying the API server for resources - name: AWS_ACCESS_KEY_ID
mountPath: /etc/kubernetes/pki/etcd valueFrom:
name: backup secretKeyRef:

- g hanl Lallas b) L
mountPath: /backup Torestore a p, run the g d: name: cloud-credentials

key: aws_access_key_id

volumes: - name: AWS_SECRET_ACCESS_KEY
- name: etcd-certs E?;Z'S;f!;;‘mm.c.m velero restore create --from-backup <backup-name> vElE AR
secret: metadata: secretKeyRef:
secretName: etcd-certs e By default, Velero will restore all resources in the backup to their original namespaces. If you want to restore only certain name: cloud-credentials
ame: o <storage-ciass> ; " R . R key: aws_ . _k
name: backup I e namegpaces or resources, you can specify them with the --include-namespaces and --include-resources flags, respectively volumes:ey LR Gy
 ReadWriteOnce
g velero restore create --from-backup <backup-name> --include-namespaces my-namespace \ B Zz'c"r:t_do“d'crede"“als
Gk) —-include-resources deployments,pods secretName: cloud-credentials
L
E This manifest sets up a CronJob that runs an eted backup job every hour, using the
command-line tool inside a iner to create a snapshot of the eted database and save it o the specified path. It mounts the eted certificates and a PersistentVolumeClaim for storing the backup.
To restore an eted backup using etedetl
€ Enure that the Kubernetes AP server is not active or stopped (@) change the path of the ETCD data directory to var /var/lib/eted-from-backup/, you @ Use the etedetl to restore the backup
need to edit the manifest file and update the relevant volume and hostPath specifications
[sudo mv /etc/kubernetes/manifests/kube-api.yaml another-path etedctl restore /backup/k8s/etcd-snapshot.db \
volumes: etes/manifests/etcd yai ~data-dir=/var/lib/etcd-from-backup \
Or itial-cluster= etcd01= 1= \

- name: etcd-data
(sudo systemctl stop kube-apiserver] hostPath:
path: /var/lib/etcd-from-backup/ --name=kubemaster-1

Refers to the actual data produced and managed by the applications running on your k8s cluster. This could include databases, user-generated content, logs,

Application dat
ppicationdata ' 1 anything elee that your applications are producing or manipulating

Csl-driver
storage provider

There are geveral strategies you can follow to backup thie data: P
claims persistent . i GER D
s Persistent Volume associated with N—
. A A Byl Oy (10 [T n _persistent voume___|
Databage Backups: If you're uging a database in your application, it's likely that the database itself hag backup S
- " Create persistent |
functionality. For example, you can create a dump of a MySQL database or a snapshot of a MongoDB databage. s :
—— Request a :
: . q 5 5 N N Mounted ersistent Volume | persistent volume Requests a disk from
Backup Sidecars: Another approach is to use a sidecar container in your pods specifically for managing on pod >| Claim storage provder |
. . g . " . |
backups. This container would be responsible for regularly ereating backups and sending them to a remote location e :
I
e el I By m
(: . .) | Request a Volume I |
Volume Snapshots: Kubernetes volume snapshote provide a standardized way to create copies of the content of I | Volume Snapshot _[<Smtotcones V°'Umeé| SNapSNOT | Roquests a snapshot o I }
ass disk from storage provider |
pergistent volumes at a point in time, without creating new volumes. [}]
| Create volume I !
To create a VolumeSnapshot in Kubernetes, follow the steps below [Snapshot Content - | _ }
\ I T T e NS -
Ensure that you have the necessary Create a VolumeSnapshot of the Verify VolumeSnapshotContent } chims Volume Volurge i | e I
rapeot Contere ontent
prerequisites in place desired PUC wag created [Vohume Snashot Content_{ L, |
Cluster must have volume snapshot CRDs,and ___ | | Cheok the status of the VolumeSnapshot S Gcdiciciiad I
. . I I
snapshot controller deployed on it for this to work I Define a VolumeSnapshot object that ! to ensure it is created successfully When you create a VolumeSnapshot object, it triggers the storage provider to ereate a snapshot of
[kubecu get crds | grep sns J ! references fhe PUC youwant fo snapshot | [kubectl describe volumesnapshot <snapshot-name>] the underlying storage volume. The snapshot i¢ represented by the VolumeSnapshotContent object

€8I driver and storage olase fhat support volume snapshote” ————————"—"— [T

To restore a enapshot, create a new PUC baged on a VolumeSnapshotContent. Thie results in

apiVersion: v1 When a VolumeSnapshot object is created, the VolumeSnapshotClass provisions a VolumeSnapshotContent to hold 2 new PV with data popula'fed from the snapshot

L4Ges :E’s's‘e”(v"‘”mec'a‘m the actual snapshot data.. Deleting the VolumeSnapshot object does not delete the VolumeSnapshotContent object.

metadata:
:ai\:; acs‘.pvc If you want to delete the snapshot data, you need to delete the corresponding VolumeSnapshotContent object VolumeSnapshoet (| Deployment

spec: Create a Pod that mounts the
- R R B
- ReadWriteOnce

kind: PersistentVolumeClaim

metadata: kind: Deployment

Fecources:
requests: RIS o VolumeSnapshot | _ _{'y/ojymeSnapshotContent Storage Class
storage: 1Gi

metadata:
name: csi-pvc-restored s e
storageClassName: csihostpath-sc | apiVersion: snapshotstorage kBsio/v] spec: oo
(T kind: VolumeSnapshot accessModes:

apiVersion: snapshot storage k8s.o/v1 | VolumeSnapshotClass metadata: - ReadWriteOnce volumes:
kind: VolumeSnapshotClass name: new-snapshot-demo ’ef::‘zzzl - name: my-csi-volume
metadata: spec: . G persistentVolumeClaim:

name: csi-hostpath-sc storage: 1Gi

claimName: csi-pve-restored

deletionPolicy: Delete

storageClassName: csi-hostpath-sc

The VolumeSnapshotClase defines the snapshotter/provisioner that will be used to take snapshots and parameters like retention poliey, etc.
it enables dynamic provisioning of snapshots, just like a StorageClass allows dynamic provisioning of volumes

New PV provisioned from the snapshot data

Security

Kuberneteg uges a combination of secure network channels, authentication and authorization mechaniems, network policies, and container security features to ensure that all
communication within the cluster is authenticated, encrypted, and secure. These mechanisms help to protect the cluster against unauthorized access, data breaches, and other
security threate, and provide a reliable and secure platform for deploying and managing containerized applications.

Secure network channele: Kubernetes useg secure network channels to ensure that all communication within the cluster is encrypted and secure. Thege channels are established using
Transport Layer Security (TLS) certificates, which provide a secure way to authenticate the identity of different componente and encrypt all data that is trangmitted between them.

[n Kuberneteg, many of the componente uge mutual TLS (Traneport Layer Security) authentication for secure communication between each other. Thie method involves each component
having ite own certificate (ert) and private key (key) that are used to authenticate and encrypt communication when communicating with other components.

The cluster's certificate authority (CA) ¢ responsible for issuing and managing certificates used for authentication and encryption within the cluster. the CA is typically implemented as a component within the Kubernetes control
plane, and is responsible for generating and managing the cluster's root certificate and private key. These are used to sign and issue certificates for different components within the cluster, such as nodes, APl servers, and users.

/ete/kubernetes/ i¢ a directory that containg Kuberneteg configuration

files. usually used for defining settings related to the k8s components CERTIFICATE AUTHORITY (CA)

arye@kubemaster-1:/etc/kubernetes$ Il

-rw----—-- 1 root root 5450 May 18 09:34 admin.conf

-we-——-- 1 root root 5486 May 18 09:34 Allrequests and responses between different components in -

“rW=--=-mm 1 root root 1886 May 18 09:35 kubelet.conf .

drwxr-xr-x 2 root root 4096 May 18 10:30 / the cluster are routed through the APl server, which ensures

drwxr-xr-x 3 root root 4096 May 18 09:34 pki/ that all communication is authenticated and secure. = . .
W 1 root root 5438 May 18 09:34 apiserver.ort Kube ADI apigerver-eted-client .ort

Thege configuration files are escential for the proper functioning of the various k8 apigerver.key Qerver

components. They contain settings such as the APl server address, authentication

apigerver-eted-client key C]

Etedserver.crt
Etedserver.key

and authorization information, and other component-specific configurations

admin.conf: Thig file containg the configuration for the Kubernetes cluster — .
- o N 5) g Admin.crt
adminigtrator, holding the necessary credentials and cluster information to —_

> Admin.ke
interact with the cluster using the kubectl command-line tool = ey

These certificates are icsued by the Certificate Authority (CA) Il\
|
|
|
|

The /ete/kubernetes/pki directory i¢ a directory used by Kubernetes to

store the public key infrastructure (PK) materials, such as certificates kube-proxy.rt
and keys, that are used to secure communication between the different Kube-proxy.key Kube-proxy

components of the Kubernetes cluster.

arye@kubemaster-1:/etc/kubernetes/pki$ Il Container-manager.crt
root root 1090 May 18 09:34
root root 1679 May 18 09:34
root root 1099 May 18 09:34 apiserver-kubelet-client.crt
root root 1675 May 18 09:34 apiserver-kubelet-client.key

Container-manager.key

A
|
|
:
|
|
|
|
|
I
|
|
|
|
|
|

kubelet.crt
Kubelet kubelet.key

mE i,) W
root root ay M er.key _Qnrhodnlor | T
root root 1025 May 18 09:34 ca.crt Scheduler key Kube-Scheduler The kubelet.crt and kubelet key files are typically located in the /var/lib/kubelet/pki
root root 1679 May 18 09:34 ca.key directory on the node where the kubelet i¢ running

drwxr-xr-x 2 root root 4096 May 18 09:34 etcd/
root root 1038 May 18 09:34 front-proxy-ca.crt A The Scheduler.crt and Scheduler key files are not typically found in the /ete/kubernetes/pki directory because the
root root 1679 May 18 09:34 front-proxy-ca.key L . S e Certificate (public key) Private key
root root 1058 May 18 09:34 front-proxy-client.crt Kubernetes scheduler component does not require ite own certificate and key for secure communication within the cluster. ose ot i
root root 1675 May 18 09:34 front-proxy-client.key The communication between the scheduler and the APl gerver is typically secured uging the APl gerver's certificate and key *grt “key
root root 1675 May 18 09:34 sa.key *pem *key.pem

root root 451 May 18 09:34 sa.pub

Certificates generated by kubeadm expire after [year and willneed tobe|
renewed. kubeadm provides a simple command to renew all certificates

—— —{ ltig advisable to backup your certificates and configuration files before executing the command

hoad:

uge the k certs renew d with the all option

[/etc/kubernetes/pki/“.* I/etc/kubernetes/’.conf I~/.kube/oonﬂg]

jl
To renew all the certificates in a k8s cluster with kubeadm, you can ’_
|
|

root@kubemaster-1 (/etc/kubernetes):
kubeadm certs renew all

1

|

This will renew the following certificates: I
- eted server and peer certificates [

\

\

\

\

\

\

\

\

\

- —‘[After running the command you should restart the control plane Pods]
- APl server certificate

Static Pods are managed by the local kubelet and not by the AP Server, thus kubectl cannot be uged to delete and

- Front proxy client certificate
restart them. To restart a static Pod you ean temporarily remove ite manifest file from /ete/kubernetes/manifests/

- Controller manager client certificate

- Scheduler client certificate

Note: kubelet.conf is not included in the ligt above

you can check the expiration dates of the certificates

arye@kubemaster-1:~$ sudo kubeadm certs check-expiration == *{ kubeadm can renews all the certificates during control plane upgrade.
[check-expiation] Reading configuratin from the cluste...
[check-expiration] FYE: You can look at this config file with 'kubect! -n kube-system get cm kubeadm-config -oyaml'
CeRTCATE Bowes RESOUAL TWE CERTHICATE AUTHORTY EXTERRALLY MANAGED] L . . q .) "
admin cont May 18, 2023 0934 UTC 341 no This feature is intended to address straightforward scenarios. If you don't have specific requirements regarding
apiserver May 18, 2023 09:34 UTC 341d ca no " . .
apiserver-ctcd-client May 18, 2023 09:34 UTC 341d e — certificate renewal and regularly perform Kubernetes version upgrades (with legs than a year between each
apiserver-kubelet-client ~ May 18, 2023 09:34 UTC 341d ca no . "
controllermanager.conf May 18, 2023 09:34 UTC 341 o upgrade), kubeadm will handle the process to ensure your cluster remaing up to date and reasonably secure.
etcd-healthcheck-client ~ May 18, 2023 09:34 UTC 341d eted-ca no
etcd-peer May 18, 2023 09:34 UTC 341d etcd-ca no
etcd-server May 18, 2023 09:34 UTC 341d etcd-ca no
front-proxy-client May 18, 2023 09:34 UTC 341d front-proxy-ca no
scheduler.conf May 18, 2023 09:34 UTC 341d no
CERTICATE AUTHORTY oxoRes RESOUAL THE EXTERNALLY MANAGED
May 15, 2032 09:34 UTC 9y no
etcd-ca May 15, 2032 09:34 UTC 9y no
front-proxy-ca May 15, 2032 09:34 UTC 9y no

you can use the following command to digplay the details of a certificate file in a human-readable format:

[upenssl x509 -in /etc/kubernetes/pki/apiserver.crt -text -noout j

Authentication & Authorization]

When a client (such ag kubeetl or a custom application) sends an APl request to Kubernetes, the request goes through several steps before it is processed and a responge is gent back to the client

LoadBalancer e nalreneet L. Q Who can access? Authentication
] |E=mEr L0 Authentication [Authorization '—>[Admission control == eted What can they do? Authorization
7777777 >
Internal request
K8 objeots list of some built-in admission control pluging available in Kubernetes
LimitRanger (enforces resource limits on pods and containers)

Request

Role-Baged Access Control (RBAC) is common authorization method in Kubernetes NamespaceE xicts (rejects requests in namespaces that don't exist)

RoleBinding = v NameSpace
————— Who?
Which Roles?

Role

Which resource?

ValidatingAdmissionWebhook (calls a webhook to validate the object)

MutatingAdmissionWebhook (calle a webhook to mutate the object)
| Authentications plugin

* Static Token file
* Open D Connect

B X500 certificates ———— |Authe
+ Authentication proxy
- Webhook

DPodPreset (injects configuration data into pods based on pod presets)

What acti

RuntimeClags (enforces the use of a specific runtime elase for pods)

you can also use Gatekeeper, It allows you to define and enforce custom
policies that restrict the creation and modification of resources in the cluster

if one authorization plugin fails to authorize the request, APl server Bl Authorization ean prevent unauthorized aceess to resources in the cluster, it cannot prevent the creation or modification of resources that do not comply with the cluster's policies.
try another plugin until it finds one that can authorize the request ~ Admission control helps ensure that only valid and compliant resources are created or updated in the cluster, which can prevent micconfigurations, security vulnerabilities, and other issues

Authentication: Kubernetes uses authentication mechanisms to verify the identity of users and components trying to access the cluster. Thig ensures that only authorized users and components can access the
cluster.

The most significant authentication methods in k8s

Service Account authentication X509 client certificates authentication
Service Account authentication is a method that uses Kubernetes Service Accounte | X.509 client certificates authentication is a method that uses digital certificates to authenticate
to authenticate clients. Each Service Account in the cluster hag its own token thatis | clients. Each client in the cluster has its own certificate and private key that are used to authenticate
uged to authenticate clients. This method is commonly used when a cluster has a large | and encrypt ication when icating with other components. This method is commonly
number of clients or when automated processes need to access the Kubernetes API

uged when a cluster hag a small number of clients or when strong authentication is required

|
|
(1
status: Failure |
Code”: 403
} |
|

| Webhook authentication
|
|
|
|

Webhook authentication ic a method that uses an external HTTP gervice to authenticate clients. Thie method ic commonly uged when a cluster needs to integrate with acustom authentication

Who are you? | system. The external HTTP service receives authentication requeste from the Kubernetes AP server and returng a response indicating whether the client i¢ authenticated or not

vy |

® Authorization
an authenticated user can execute | Authorization: Kubernetes uses authorization mechanisms to determine what actions a user or component can perform within the eluster. This ensures that users and
What action on whichresources | components have access only to the regources they are authorized to access.

Authentication

Role-Baged Access Control (RBAC): RBAC is a security mechanism in Kubernetes that allows you to control access to resources based on the user's role and permissiong. in RBAC, you define roles and cluster roles
that specify a set of permissions, such ag read, write, or delete, for a particular set of resources. You then ereate role bindinge and cluster role bindings that aseociate roles and cluster roles with users, groups, or service accounts.

Webapp NameSpace
ClusterRoleBinding
Who?
Which Clugter Roles?

Admin groups

o

dev NameS|
RoleBinding lev NameSpace
Who?
Which Roles or

Service-Account

Subject Role

Which resources?
What actions?

DPods ClusterRole
Which resources?
What actions?

SQtatefulSet Team-A NameSpace

apiVersion: rk
R

ConfigMaps ~ Services
Pue8 Deployments

Resources

create

Verbs define the types of actions that a user or
kind: Role service aceount can perform on a specific resource
: pod-list-permission

apiGroup

Role is a set of permissions that define what actions RoleBinding is a mechanism for binding a role to a ServiceAccount,auser or | ClusterRoles: A ClusterRole ig similar to a Role, but it applies to the@nfirecluster) | ClusterRoleBinding is
are allowed on specific resources within@namespace: | group of users within a namespace. Role bindings are used o grant epecific | instead of a single namespace. ClusterRoles can be used to grant permissions for | cluster-scoped and apply
permissions to ugers or groups of usere by assigning them to a particular role | cluster-scoped resources (e.g. Nodes) or for resources in all namespaces. to all namespaces

some built-in ClusterRole

T
FCIusferdmin: This role ig intended to be used by administrators who need full access o all resources [“kubect! describe clusterrole cluster-admin M)
! in the cluster. [t grants permissions to perform any action on any resource in any namespace.

Built-in Roles and ClusterRoles are predefined by k8s. Thege built-in roles are
RUBELLIATREREERY | designed to provide a set of default permissions for managing Kubernetes resources
be either custom or built-in o admin: This ClusterRole provides full aceess to manage resources in a specific namespace, including
K get clusterrole Bl Cuctom Roles and ClusterRoles are created by users to define their own set of | 1 the ability to create, update, and delete resources

permissions for managing Kubernetes resources = , system:node:™: These ClusterRoles provide permissions for k8s controllers and

nodes to manage regources in the cluster

The 'system:node’ ClusterRole is used to define the set of permissions for nodes in the cluster. This ClusterRole is typically used to grant

permissions to the kubelet, to perform actions on various resources related to nodes, including nodes themselves, pods, and service accounts

Admission control: Kubernetes uses a Admission control mechanism for enforcing rules and policies on k8s resources before they are ereated or updated in the cluster. Thig ean include validating the structure
and content of resource manifests, applying default values, and enforeing constraints on resource usage. There are two types of admission control plugins:

Validating admission plugins: These pluging validate the request object without modifying it. They can reject | Mutating admission plugins: These pluging ean modify the request object, as well ag validate it. They are
the request if it doesn't meet the required criteria. executed before the validating admission pluging

Service Account]

Service accounts in Kubernetes are non-human accounts that provide a unique identity for system components and application pods. These aceounts are namegpace-gpecific objects managed
within the Kubernetes APl server. By default, each Kubernetes namespace includes a service aceount called "default” which hag no special roles or privileges assigned to it. In earlier versions of
Kubernetes prior to .24, when a service account wag created, an agsociated token would be automatically generated and mounted within the pod's file system. However, from Kubernetes [.24
onwardg, the automatic token generation has been discontinued, and tokens mugt be acquired through the TokenRequest APl or by ereating a Secret AP object, allowing the token controller to
populate it with a service account token.

tomaticall te & default) a apiVersion: v1 namespace:dev

[kubeaﬂ j— name>) automatically create a default service accoun s —— Gervice Aosount:default :)

S— J metadata:
. : default
Every kubernetes namegpace hag a default service account named default once being created zzzzsp:c;t TEESFAEAERE & (Pod Pod)
> serviceAccountName: serviceAccountName:

If a pod is created without specifying a service account, it will use the default ServiceAceount, default Service Account has limited permissions, - OO N e o

ut f you need to grant your pod more permissions, you can create a with the necesgary roles and assign it o the pod.
but lfy d to grant y d issions, y t ith th y roles and assign it to the pod.
[Creating and Using a Service Account in a Kuberneteg Pod.]

1 Create a service acecount [kubectl create serviceaccount]

:in Kubernetes vl.24 and earlier, when a Service Account ig ereated, a token secret ig automatically generated and stored in the same namespace. This token secret ig used for authentication and authorization
1purposes, However, in Kubernetes vl.25 and later, this automatic token creation has been removed. Instead, there are alternative methods for token creation and management. Here are gome options:

apiVersion: v1

kind: Secret
Qeoret AP object When you create a Secret with the annotation kubernetes.io/ service-account.name and specify a ServiceAccount name, the token —-—
ecre objec ;
il controller in k8 will automatically populate the Secret with a service account token associated with the referenced ServiceAccount. name: monitoring-agent-SA-token
0 you don't need to manually generate or provide the token for the Secret.The token controller takes care of generating and populating the token for you annotations:
Lub_ern_etss.io/serxicifacc%m&namz: monitoring-agent-SA
type: kubernetes.io/service-account-token

TokenR : TokenRequest is an APl resource in k8s that allows you to request a token for a specific Service Account. [t offers a way to dynamically generate short-lived tokens for authentication and authorization
oken s S 3

enteque purposes. The TokenRequest object has several important fields, with the audience field being one of them. The "audience field specifies the intended recipient(s) or target audience for the requested token,
defining the authorized ugers or services for token usage. Here are some examples of audiences that can be specified in the audience field

kind: TokenRequest

Ebaﬁgn;tbgrjgajiankﬁs:ig: For Role and ClusterRole operations J&’Jejx ice k&e.io: For Metrics APl access J MEEEEEE
name: monitoring-agent-SA-token
spec:

(apjhemigatqukg <.io: This specifies use by authentication methods and operators like kubelet] [gfqrgggjg& <.io: For Storage operafiong] Paummos

I
| |api: This specifies that the token is intended for use against the Kubernetes AP server. APl access given to service accounts is enforced by this audience]
I

2) Grant permissions to the ServiceAccount

. kind: ClusterRoleBinding

|Create a Cluster Role that grante the necessary permissions for SA and Create a Role Binding that associates the Service Account with the Cluster Role B -

ICode creates a ClusterRole that grants permisgiong to retrieve and list information about pode and nodes in the k8s cluster uging the “get", “liet", and "watch” verbe apiVersion: rbac.authorization.k8s.io/vl | name: monitoring-agent-role-binding
| kind: ClusterRole subjects:

I metadata: kind: ServiceAccount

1 To check the permissions of a gervice account in Kubernetes, execute the following command to ligt all the available permigsione granted to the name: name: monitoring-agent-SA

1 monﬂoring»agent»SA Service Account in the default namespace. | kubectl auth can-i —list --as=system:serviceaccount:default:monitoring-agent-SA rules.: . role.Ref:

i - apiGroups: [""] kind: ClusterRole

| The ~-list flag is used to list all the actions and resources that the service account has access to, and the --as flag is used to specify the service account to check resources: L .‘p?‘d ° TOdeS] name: monitoring-agent-role

I the e for verbs: ["get", "list", "watch"] apiGroup: rbac.authorization.k8s.io
| b

apiVersion: v1
. . kind: Pod
8) Mount the service account token into a pod metadata:

name: monitoring-agent

§ . . . ; . spec:
When you specify the serviceAccountName field in the Pod spec, Kubernetes mounts the secret containing the Service Account token ag a volume in the Pod. RS MR
The volume is mounted at /var/run/secrets/kubernetes.io/ serviceaccount, and the Service Account token is stored in the token file inside this volume contaiers: .
- name: monitoring-agent
image: monitoring-agent-image
args: ["--kubeconfig=/var/run/secrets/kut
ClusterRole Dod volumeMounts:
Which resources: e Service Account - name: sa-token
ind i g mountPath: /var/run/secrets/kubernetes.io/se
Dods,nodes _eind | 777M70u7nf777> serwceAccou.ntN‘ame. c ibern i
. monitoring-agent-SA readOnly: true
What action: volumes:
gei,lisf,wafch - name: sa-token
secret:

secretName: monitoring-agent-SA-token

(Subject subjects: rules:
- kind: ServiceAccount - apiGroups: [""] =

—"name: sara resources: ["pods"]
) R namespace: default verbs: ["get", "list", "watch"
2) Retrieve the Service Account token 5 L L
[Kubectl -n default create token sara]

[Using a Service Account to Access a Kubernetes Cluster with kubectl]
1) Create & Grant permissions to the service account o
O eBining Ui 2o
|[kubect! serviceaccount sara] Sara
: Who? apiVersion: rbac.authorization.k8s.io/v1 | apiVersion: rbac.authorization.k8s.io/v1
I bl role pod-list-permission ‘Admin groups kind: RoleBinding kind: Role
& metadata: metadata:
| (%& name: pod-list-permission-binding name: pod-list-permission
: kubect! rolebinding pod-list-permission-binding --role=pod-list-permission --user=sara --namespace:default:] namespace: default namespace: default
|
|

S thic command creates a role binding in the default namespace that binds the pod-list-permission role to the user sara

1 You can retrieve the Service Account token or recreate it by running the following commands: | ©/10GeiOUSUzITNisIm. .. Lz9APOb2rsWHGHWA AL i =
| name: pod-list-permission B o
| apiGroup: rbac.authorization.k8s.io .
v
8) Set the token ag a credential in kubect!
To add the user sara o this .kube/config file, you would need to add the following code configuration |2¥*>°™ ! kube/config fle | | The "rules” seation in a role speifies the permissions granted by the role. The "rules” seotion
under the users seetion e - cluster: ig an array of rules, where each rule specifies the resources and operations that are allowed
= certificate-authority-data: LSOtLS1CRUJTIBD...RVURSOLSOtCg== - =
UEER server: https://127.0.0.1:42995 The "subjects” section specifies the user or group of users to which the role should be bound.
token: eyJhbGciOiJSUzI1Nilsim...Lz9APOb2rsWHrOHWA name: k8s-cluster-1

A subject can be a user, a group, or a service account.

contexts:

After adding this configuration, you would then need to create a new context that uges the sara user

- context:
- - cluster: k8s-cluster-1 How to bind a role to multiple users? How to specify multiple rules in a Role?
and the k8s-cluster-{ cluster p— cluster: ¢
cluster: k8s-cluster-1 name: sara-k8s-cluster-1 . apiVersion: rbac.authorization.k8s.io/v1
user: sara - context: subjects: kind: Role
name: sara-k8s-cluster-1 cluster: k8s-cluster-1 - metadata:

name: mohsen

user: arye ‘ name: pod-viewer
: E B el apiGroup: rhac authorization kaso namespace: my-namespace
Finally, set the current-context field to the newly created context name EECo e RSl = ik W rules:
kind: Config panelarve ~ apiGroups: [""]
[current-context: sara-k8s-cluster-1] preferences: {} i Z:ﬁm;&élzﬂg-@utbqﬂza}m k8s.io resources: ["pods"]

us
- name: arye

[user:

client-certificate-data: LSOtLS1CRUdJTIBDRQUR...SOtLSOtCg==

verbs: ["get", "list"]
name: developers - apiGroups: [""]
,,,,,,,,,,,,,,, resources: ["services"]

Thie configuration sets the authentication method for the user sara to uge a bearer token (token field) “ verbs: ["get"]

instead of the client certificate and client key used by the arye user client-key-data: LSOtLS1CRUJTIBAONIHFXSOL....LS0tCg== you can bind a role to multiple users by - - -
- name: sara - le binding that specif You can also specify multiple rules in the
. ereating a role binding that specifies “ B)
Using Service Accounts for authentication can be more secure than uging user accounts user: 9 9 P rules” section of a role

token: eyJhbGci0iJSUzI1Nilsim...Lz9APOb2rsWHrOHWA multiple users in the “subjects" section
becauge Service Accounts are automatically created and managed by Kubernetes

(5

AP Groups

In k8s, APl groups are a way of organizing related resources and operations together. Thig allows for easier discovery and usage, and alco helpe to avoid naming conflicte between
different resources. When k8 wag first introduced, all the resources like Pod, Service, ReplicationController, ete., were all part of a single group, the “core” group, and were accessed
at the path /api/vl.A¢ k8s evolved and more resources were added, it became clear that this single group was not scalable. So, the concept of AP groups wag introduced

Kuberneteg uges a versioning scheme to facilitate the evolution of its APL. There are three types of versioning in Kubernetes:

Alpha: Thig is the first stage of the development of a new API. Beta: Thig is the second stage. Beta APlg are well-tested and are Stable: Thig ie the final stage. Stable APl appear in released
Alpha APls may be unstable, change significantly after the initial || enabled by default in your clusters. However, they may stillundergo | | software for many subsequent versions
releace, and may not even be enabled in your clusters. changes, such ag in the form of bug fixes or feature enhancements.

The version of an APl group is represented by vXalphaX (e.g., vlalphat), uXbetaX
(e.g., v2beta2), and vX (e.g., vl) for alpha, beta, and stable versions, respectively.

Kubernetes AP groups are divided into two categories

Named APl Groups
Named APl groups are additional AP groups introduced to extend the functionality of Kubernetes beyond the
core resources. Each named AP group focuses on specific features or functionalities and manages specialized
resources related to those features. The Named AP group is accessed using the /apis endpoint

Core API Group
The core AP group, also referred to ag the “vl" group, contains the essential resources that are fundamental to

the functioning of a Kubernetes cluster. It includes resources such ag Pods, Services, Namespaces, ConfigMaps,
Secrete, and more. The core AP group is accessed using the /api/ vl endpoint

pue

apps: This group containg resources related to running | |bateh: This group includes resources | |rbac.autharization k8s.io: This group contains the Role, networking.k8s.io: This group contains || storage.k8s.io: This group contains resources
applications on Kubernetes. [t includes Deployment, | |for bateh processing and job-like ClusterRole, RoleBinding, and ClusterRoleBinding resources |[resources related to networking in k8s, ||related to storage, such as StorageClase,
ReplicaSet, StatefulSet, and D. Set. tasks. [t includes Job and CronJob. | |for handling role-based access control (RBAC) in Kubernetes. || such as NetworkPoliey and Ingress. VolumeAttachment, and the CSINode driver

You can list all available APl groups and versions in your eluster by running kubectl api-version.

[/ he;lfhz I/ melfriesI / lc;gs J[D

Jbatch [/ .
i) In addition to these AP groups, k8s also provides several non-resource endpoints that are not part
of any specific APl group. These endpoints provide access to information and functionality that are
/V1| [/V1] Version not agsociated with any specific resource, such as the /healthz, /metries, and /logs endpoints

Core groups
/Statefulset

l /Replicaset
e
/Deployments delete patch

KUBECONFIG and KUBECONFIG file] et Vere
The KUBECONFIG environment variable ig used to specify the path to the Kubernetes configuration file, which contains information about the cluster, user, and context used by kubectl and other

Kubernetes command-line toole. The KUBECONFIG file can contain multiple contexts, each representing a different cluster and namespace. The KUBECONFIG file is typically stored in the uger's
home directory at the path ~/ kube/config on Unix-based sycteme

new kubeconfiy

apiVersion: vi1
Kind: Config

[Mohsen][Arye]

Users

This command uses the specified KUBECONFIG file instead of the default ~/ kube/config file

{kubectl --kubeconfig=/path/to/my-kubeconfig/my-kubeconfig.yaml get pods] ‘

- name: GKE
cluster:
certificate-authority: ca.cert
servrer: h

[To create a kubeconfig file using kubectl, you can follow these steps:] Kubeconfig : 2::?;? EECRE

{Set the cluster details]{Set the user credentials]- Use the context | Contexis cection defines the mapping between the Kubernetes cluster(s) and the ugers who cluster: GKE
user: Arye

can access them. A context includes the cluster and uger information, ag well ag a reference
——namespace: dev

1o a default namespace and a name for the context

- name: Arye
[kUbBBN config set-cluster GKE —-server=https://k8s-endpoint:04 43 --certificate-authority=ca.crt —-embed-certe ~-kubeconfig new.kubeconfig] [lf embed-certe=false } user:
F S \ ‘\ " = / ’\ client-certificate: arye.crt
B M K8s CA certificate for TLS verification p . erLnp H sar
Sl cisbostu pitecon o ROl boe Server Address ¢ e the certficate data directly n the kubeconfig nstead of inking foa e K9P200nAd e that wilbe ereated wihths new entry. SIEMHICY: ERELEY
current-context: Arye@GKE
[kubeoﬂ config cet-credentiale Arye --client-key=/path/to/ arye key --client-certificate=/path/to/ arye.crt --embed-certe --kubeconfig new kubeconfig] [lf you uge a token]
— dser ey e wser certifioate fll [l The default namespace to use for this context.
N
[kubecfl config cet-credentiale Arye --token= eyThbGeiOiT SUzIINilglm...L.z20 APOb2rsWHrOHWA --kubeconfig new.kubeconfig] [lf you use a client certificate]
[kubeotl config cet-context Arye@GIE --cluster=GKE --user=Arye pace=dev --kubeconfig new.kubeconfig J
context name default namespace

you can epecify a different kubeconfig file by setting the KUBECONFIG

[kubectl config use-context Arye@GKE] . .
environment variable.

[export KUBECONFIG=new kubeconfiy |

Cluster Scope in Kubernetes I

[n Kubernetes, resources are divided into two categories baged on their scope: Namespaced and Cluster-gcoped

Namespaced resources: These resources exist and operate within a namespace. CE D

They can have different configurations and states in different namespaces [Dcpoymert] Repliaset 1 Pods | Services 1 ok P D
; m pv cluslermles NAME. SHORTNAMES. APIVERSION. NAMESPACED. KIND
Cluster-scoped resources: These resources exist and operate across - o " e —
oo Pods po vl false Pod
the entire cluster. They are not confined to any particular namespace Sum o= & true Senice
leploy apps/v1 true Deployment

[kubem api-resources —namespace—false j t\gresses ing extensions/v1betal true Ingress.

. . Creating
CreatingRole ~ [>>~> s
Creatinganew | | CreatingaCSR Review by Admin | Creating a 77 RoleBinding
private key & CSR YAML file & approve it kubeconfig file [~
Creating Creating
ClusterRole ClusterRoleBinding
I8 Creating private key & a cer file by new ug P Creating a new CSR yaml file and Sign the CSR using the Kubernetes CA

Create a CertificateSigningRequest object in Kubernetes that includes the user's SR and submit

Generate a private key for the uger uging OpenSSL. The private key is used as
the CSR to the Kubernetes cluster

part of the user's eredentials to authenticate with the Kubernetes APl server

[openssl genrsa -out mojtaba.key 2048]

kind: CertlflcateSlgnngequest

csr-mojtaba.yml

. 5 metadata:
Create a CSR for the uger uging the private key TEE mEERs
{openssl req -new -key mojtaba.key -subj “/CN=mojtaba” -out mojtabalesr } SP;C;ups_ Gequest; $(cat user-name.csr | base64 -w 0))
- system:authenticated Or

The CSR includes the uger's identifying information and the public key associated with the private key FEIENE (SOAS EATE REERT

gQOVSVEIGSUNBVEUgukVRVUVTVCOtLSO(Cg—

OKLSOtLSTFTKQ... <+~

_@t mojtaba.csr | base64 -w 0)

- client auth

The signerName specifies the Kubernetes CA that will sign the certificate.
specifies that the certificate will be used for client authentication.

{ kuectl apply -f csr-mojtaba.yml]

M cubmit the CSR to the Kubernetes cluster and approve it LIME xport the issued certificate from the CertificateSigningRequest.

you retrieve the signed certificate for the uger
Once the CSR is submitted, it needs to be approved by a cluster administrator.

[kubectl get csr mojtaba -0 jsonpath='{.status.certificate}' | base64 -d >mojtaba.crt]

(- N
k get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION 5 ate a kubeconfig File for
mojtaba 33m kubernetes.io/kube-apiserver-client kubernetes-admin Pending
p= < Create a kubeconfig file for the uger that includes the cluster details, user credentials, and context. The
k describe csr mojtaba certificate-authority-data field contains the base64-encoded CA certificate for the Kubernetes cluster.
Name: mojtaba
Labels: <norj19> apiVersion: v1 (api q 0
kabect, N oih @ f'- apiVersion: v1
1" "ind""CertificateSigningReat -{}, "name"s" incpeonio kind: Config
["system:authenticated"],"request":"LSOtLS1 CRUCTIKKNUIEGCOBWTOKLSOLLST FTkO_qQOVSVEIGSUNBVEUgUkVRVU
VTVCOtLSOtCg==","signerNam ver-client","usages":["client auth"]}} current-context: mojtaba@cka current-context: mojtaba@cka
CreationTimestamp: Sat, 11 Jun 2022 17:51:33 +0000 OStersy
Requesting User: kubernetes-admin clusters: clusters:
Signer: kubernetes.io/kube-apiserver-client - name: cka - name: cka
Status: Pending cluster: cluster:
Subject:
Common Name: mojtata setver: httpsi//kubemaster1:6443 server: https://kubemaster-1:6443
Serial Number: certificate-authority: ca.crt certificate-authority-data: <base64-encoded CA certificate data>
Organization: StarkWare
Organizational Unit: blockchain 5 .
Country: users: . itab: i users: .
Locality: haifa - name: mojtaba - name: mojtaba
Province: haifa user: 1 user:
Events: <none>) client-certificate: mojtaba.crt || client-certificate-data: <base64-encoded client certificate data>
client-key: mojtaba.key |1 client-key-data: <base64-encoded client key data>
. . 1
,—(k certificate approve mojtaba) s L I
| - name: mojtaba@cka I - name: mojtaba@cka
: k get csr context: L context:
| NAME AGE SIGNERNAME REQUESTOR CONDITION cluster: cka | cluster: cka
| mojtaba 39m kubernetes.io/kube-apiserver-client kubernetes-admin Approved,Issued user: mojtaba I user: mojtaba
| namespace: dev L namespace: dev)
L1

- This command notifies the Kubernetes CA that the CSR hag been approved and requeste a
signed certificate for the user. The signed certificate is then stored in the status.certificate
field of the CertificateSigningRequest object

{To become independent from external files in the configuration, you can use the data field directly within the configuration file
{ollem—key—dafa]

[cat mojtaba.csr | base64 -w 0]

[ueﬁiﬁaafe—amhoritg»dafa] [olienf—oerﬂﬂoaie—dafa]

[cat /etc/kubernetes/pki/ca.crt | base64 -w 0] [cat mojtaba.csr | base64 -w O]

W=
. | (ubectl config set-cluster cka --server=https://kubemaster-1:6443 --certificate-authority=ca.crt --embed-certs --kubeconfig devuser.kubeconfig]

5.1 If you don't want to create a kubeconfig manually, |
you can create a kubeconﬁg using kubeeﬂ I [kubectl config set-credentials mojtaba --client-key=/path/to/mojtaba.key --client-certificate=/path/to/mojtaba.crt --embed-certs --kubeconfig devuser.kubeconfig]
| [kubectl config set-context mojtaba@cka --cluster=cka --user=mojtaba namespace=dev --kubeconfig devuser.kubeconfig]

|
| [ubect! config use-context mojtaba@cka J

L=

(M Set Up Role-Based Access Control (RBAC) for the User

Contains.

Resources
Dod, services

In this final step, you create a role and role binding to grant the uger permissions in the Kubernetes cluster Role (Aggregated)Cluster Role
Verb(s) a collection of namespace a collection of cluster global
apiVersion: rbac.authorization.k8s.io/v1 apiVersion: rbac.authorizationk8s.io/v1 Ge,List o 5
kind: Role kind: RoleBinding
metadata: metadata: collects rules from collects rules from
name: developer name: mojtaba-developer
namespace: dev namespace: dev Pod Role Binding Cluster Role Binding
rules: roleRef: Compute unit that can interact Attached rules from one Role or attaches rule from one Cluster
- apiGroups: [“”] apiGroup: "rbac.authorization.k8s.io" with the Kubernetes AP server Cluster Role to User, Groups or $As| Role to Users,Groups or SAs
resources: [“pods™] kind: "Role" eedloredentials of)
verbs: [“list” , “get” , “create” , “update” , “delete”] name: "developer" assigns rules o assigne rules to
subjects:
- apiGroups: [“”] - apiGroup: "rbac.authorization.k8s.ig" AT User N Groups
. F<confi 5 " [rt of .. .
resource“s. l co,rjfigMap] gt Usert bt Namespaced Kubernetes managed user that A user that authenticates against e ke % acollection of Users
verbs: [“create”] OETEE el) ig infended to be used by in cluster processes the kubernetes ADI server

The reagon for having two separate rules in the Role definition is that the two resources, "pods" and “configMap", have different permissions requirements Kubernetes RBAC Objects

Auditing

Auditing in Kuberneteg refers to the process of recording and analyzing activities that oceur on the cluster. Thig can include actions taken by users, APl requests, and
changes to objects in the cluster. Auditing provides visibility into the behavior of the cluster and can be used for security, compliance, and troubleshooting purposes

Audit levele in Kubernetes define the verbosity of the recorded events. There are four audit levels:

B None: Do not log any events.
B Metadata: Log request metadata only (e.g., who, what, where, when).
M Request: Log event metadata and request content (excluding the responge).

9 Audit log events are
? RequestResponge: Log event metadata, request content, and response content. e T

ALLROADSLEADTO....
THE APISERVER

Allrequests to view or modify the state of
the cluster pass through the apiserver

Memory consumption depende | Audit logging increages the memory
on the audit logging policy consumption of the API Server

Thig central position makes the apiserver the

appropriate source for auditing data
To enable audit logging in the Kubernetes API gerver, you need to configure the APl server

to use a specific audit policy and write audit logs to a file or other destination

@ Eddit the AD! server configuration file, Add the following

flage to the epec.containers.command section eAdd a volume and volumeMount to the spec section
- --audit-policy-file=/etc/kubernetes/audit/policy.yaml volume.s: o 9 Add the corresponding volume mounts to the
- --audit-log-path= /var/log/kubernetes/audit/audit.log glaime: au.dltfcon 9 spee.eontainzrs.volumeMounfs section
- --audit-log-format=json hostPath:) .
- —audit-log-maxsize=500 path: /etc/kubernetes/audit/policy.yaml - name: audit-config
o el . type: File mountPath: /etc/kubernetes/audit/policy.yaml
audit-log-maxbackup=3 - (EMTS e readOnly: true After the AP server restarts and applies the policy.yaml
The apiserver has some audit logging options: hostPath: subPath: audit-policy.yaml file, you can tail the logs to see the events being recorded
dit-policy-file: sets th liey file path: /var/log/kubernetes/audit - name: audit-logs
EELS . G A FIH. IS type: DirectoryOrCreate mountPath: /var/log/kubernetes/audit [tail -f /var/log/kubernetes/audit/audit.log | jq]
audit-log-* setting configure log files
audit-webhook-*: settings configure log network endpoints
Audit policy is a configuration that defines the rules for what evente should be recorded and at what level [apiversion: audit.k8s.io/v1 This poliey has five rules, each specifying
/etc/kubernetes/audit/policy.yaml kind: Policy a different level of audit logging:
apiVersion: audit.k8s.io/v1 apiVersion: audit.k8s.io/v1 rules:
kind: Policy kind: Policy y W " P
rules: . - level: None S specifies that all “get", "watch’, and "list’
- level: Metadata - level: Request verbs: ["get", "watch”, "list"] operations should not be audited at all
resources: resources:
- group: N . - group: i . - level: None specifies that evente should not be
resources: ["pods", "services"] resources: ["pods", "services"] . ——] N
- level: Request verbs: ["create", "update", "delete"] resources”.” audited at all.
users: ["system:serviceaccount:my-namespace:my-serviceaccount"] - level: Metadata - group: # core
resources: resources: resources: ["events"]
- group: "" - group: "
resources: ["configmaps"] resources: ["namespaces", "configmaps", "secrets"] - level: None
verbs: ["create", "update", "delete"] users:
This poliey logs metadata for all pod and service operations and logs request | - level: Nonf - "system:kube-scheduler" _ | specifies these certain system
content for configmap operations performed by the specified service account fe;f::;.es,j,, - "system:kube-proxy" users should not be audited
resources: ["persistentvolumes", "persistentvolumeclaims"] - "system:apiserver"
- "system:kube-controller-manager"
This poliey will log request-level for pod and service creation, update, and deletion, also willlog - "system:serviceaccount:gatekeeper-
data-level events for r pace, configmap, and secret creation, update, and deletion. lt E/S el eEne e —ls specifies that all users belonging to the
will not log events related to persistent volume and persistent volume claim resources. Y “system:nodes" group should not be audited.
userGroups: ["system:nodes"]
_ | specifies that all other operations, including
- level: RequestResponse requests and responses, should be audited
at the RequestResponse levels

RuntimeClass

RuntimeClass i a Kubernetes feature that allows users to specify different runtime configurations for their containers. One common use cage for RuntimeClass is to _
run containers with different levels of isolation.For example, a user may want to run some containers with a higher level of isolation, while others may not require the

A\
same level of security. By defining multiple RuntimeClasses with different runtime configurations, the user can choose the appropriate class for each container.

s Ny

r
:Usergpace [runc] [runsc(gvisor)]

gVisor is a user-gpace kernel that provides isolation for containers by intercepting and handling system calls. It can be used with k8s to
provide an extra layer of security for your pods. To restrict syscalle for a pod running in k8s, you can use gVisor ag the runtime for that pod.

gVisor is an sandboxed container runtime developed by Google. It
provides an additional layer of isolation between containerized
applications and the host kernel using a technique called "sandboxing"

-System Calls |
How to use gVisor Install Configure Createa Use the gVisor I Kernel Space
gVisor P— RuntimeClas RuntimeClass |

sresource

in your pod

> First, you need to intall gVisor on your Kubernetes nodes. You can (@l To use gVior with Kubernetes, you need to configure the container runtime

do this using the runse binary, which is the gVisor runtime. Download (e.g., containerd) to uge gVicor. Create a configuration file for containerd:
and install the runse binary on each node:

T toml

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runsc]
runtime_type = "io.containerd.runsc.v1"

sudo mkdir -p /etc/containerd

. . q . " lugins."io. tainerd. .v1.crit. tainerd.runti .| .opti
wget https://storage.googleapis.com/gvisor/releases/nightly/latest/runsc [sudo o~ /etc/containerd/conﬁg.toml] Adn{thtsaonﬁgl\xmhon to [pl;glaT;N:)nf:lés?i;r/lg;sglybi:/r:'u:;g' ainerdiuntimesupscioptions]
chmod +x runsc the config.toml file:

sudo mv runsc /usr/local/bin [ReIeR = -
LogLevel = "info
Restart containerd to apply the new configuration: Debug = false
" DebugLogFile = ""
sudo systemctl restart containerd

NoSandbox = false

311 create a “RuntimeClass resource in your Kubernetes cluster that specifies gVisor (I To use gVisor for a specific pod, set the “runtimeClassName field to ‘guisor”
ag the runtime. Save the following YAML file as “guisor-runtime-class.yaml: in the pod spec. Here's an example of a simple Nginx pod that uges gVicor:

apiVersion: node.k8s.io/v1 apiVersion: v1

kind: RuntimeClass kind: Pod Pod

metadata: metadata: -
name: gvisor name: nginx-gvisor runtimeClassName: gvisor

handler: runsc spec:

runtimeClassName: gvisor nginx-gvisor X
(kubectl apply pply - gvisor-runtime-class.yaml] containers: Contamerﬂ
- name: nginx

image: nginx:latest Pl

ports: -
- containerPort: 80 [runc [runsc(gvnsor)

(kubsctl apply pply -f ngmx-gwsor—pod.yaml]

Network policy 32

Network Poliey is a Kuberneteg feature that allows you to define rules for ingress and egres traffic between pods inside a cluster. lt's a way to implement ecurity and access control at
the network level by specifying which pods can communicate with each other, using labels to identify the target and source pods. [ronionng

Monitoring n

Pod

——————— <)

Mysql-exporter

[Dolicies are namespace scoped Ipolicies are applied to pods uging label selectors

[polieg rules can specify the traffic that i¢ allowed to/from pode, namespaces, or CIDRS]
[policg rules can specify protocols (TCP, UDB, SCTP), named ports or port numbers]

Network policies are applied to pods rather than services because pods are the network endpointe
that actually receive the traffic. Services are not network endpoints and do not receive traffic
directly. Instead, they route traffic to the appropriate pods based on their labels.

incoming traffic from other pods or
external sources to the target pod

outgoing traffic from the target pod to
other pods or external destinations

[f no Kubernetes network policies apply to a pod, then all traffic to/ from the pod are allowed (default-allow). If one or more k8g
network policies apply to a pod, then only the traffic specifically defined in that network policy are allowed (default-deny)

Network policies are like firewall rules for your Kubernetes pods. By default, pods are non-isolated and can accept traffic from any source. When you apply a NetworkPoliey to a pod, that pod becomes isolated
and only allows traffic that ic permitted by the policy. There are several types of Network Poliey rules that can be defined in Kubernetes:

PodSelector: This rule selects a specific set of

NamespaceSelector: This rule selects all the pods
pods to apply the policy to baged on their labels.

ExternalEntities: Thig rule allows you to define specific [P addresses
in a specific namespace to apply the policy to.

or [P ranges that are allowed to icate with the selected pods

kind: NetworkPolicy
metadata:
name: db-policy
spec:
podSelector:
matchLabels:
role: db
policyTypes:
- Ingress
ingress:
- from:

ports:
- protocol: TCP
port: 3306

Pleage note that in order to use Network Policies, you must have a CNI (Container Network Interface) that su

Allow ingress traffic from pods in the same namespace

This selects the pods to which the NetworkPolicy applies.
In this case, it matches all pods with the label role: db

specifies that the policy only applies to ingress traffic

The "ingress” section specifies the traffic rules that govern
inbound traffic to the selected pods. Specifically, it permits
the

Ports filed allows you to specify the ports and protocols that
are allowed for incoming or outgoing traffic.

kind: NetworkPolicy
metadata:
name: db-policy-namespace
namespace: default
spec:
podSelector:
matchLabels:
role: db
ingress:
- from:
- podSelector:
matchLabels:
role: ms-exporter
namespaceSelector:
matchLabels:
ns: monitoring
ports:
- port: 3306

specifies that the policy applies to both Ingress and Egress traffic

specifies that pods with

can only send traffic to pods with the label “role: django”.

Allow ingress traffic from pods in a different namespace

Thig rule only allows inbound traffic from pods labeled
“role: ms-exporter” in the "ns: monitoring" namespace.
Incoming traffic is limited to port number 3306

4
b4

the label

Security Context

rts them, such ag Calico or Weave Net.

kind: NetworkPolicy
metadata:
name: traefik-policy
namespace: default
spec:
podSelector:
matchLabels:

app: traefik
policyTypes:
- Ingress
- Egress
- - ipBlock:
L/ cidr: 172.1

and
- podSelector:

matchLabels:
role: django

8.0.0/24

SecurityContext ie a configuration object that defines the security settings for a Pod or a gpecific container within a Pod. It allows you to set the access control and security-related

properties for the containers, including their file system, users, and groups, ag well as the capabilities and privileges of the processes running ingide the containers.

SecurityContext object can be defined at the Pod level or at the container level, uging the cecurityContext field in the Pod or container specification

apiVersion: v1
kind: Pod
metadata:

name: my-pod
spec:

containers:

- name: my-container
image: my-image
securityContext:

runAsUser: 1000

runAsGroup: 2000
: 3000

readOnlyRootFilesystem: true

[mage security

the privileged field is set to true, which means
that the container will run in privileged mode

container will run ag the user (D 1000, the group ID 2000, and

have its filesystem owned by the group [D 3000. Additionally,

the container’s root filesystem will be read-only, which can help to
/]improve seeurity by preventing changes to critical system files.

Y

apiVersion: v1
kind: Pod
metadata:

name: my-pod
spec:

containers:

- name: my-container
image: my-image
securityContext:

privileged: true

apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-container
image: my-image
securityContext:

capabilities:
add:
NET_ADMIN

drop:
- CHOWN
allowPrivilegeEscalat:i

ion: false

the capabilities field ic used to specify the Linux capabilities that the
container is allowed to use. Here, the container is allowed to uce the
NET_ADMIN capability, but ie not allowed to use the CHOWN capability.

Additionally, the allowPrivilegeE scalation field is set to falce,
which means that the container i not allowed to escalate
privileges beyond what is specified in the SecurityContext object

Trivy is a simple and comprehensive vulnerability geanner for containers. [t's used to identify vulnerabilities in operating system packages (Alpine, Red Hat Universal Bage Image, CentOS, ete.) &

application dependencies (Bundler, Compoger, npm, yarn, etc.). lt's especially useful in the Kuberneteg (k8s) environment for seanning container images and ensuring your workloads are secure.
Here's how Trivy can be integrated into different stages of Kubernetes deployment:

Pre-deployment Seanning:

Before deploying your workloads, you can use Trivy to sean various regources for vulnerabilities and migconfigurations. Here are some common use cages:

Third-party Libraries: Sean your applieation's
dependencies and libraries for known vulnerabilities.

underlying operating system packag

Container [magec: Sean container images for vulnerabilities in the

linatinn d;
)

T
pp p \cies

Git Repositories: Analyze your code repositories for
secrets, sengitive information, or other security issues.

You can use the Trivy CLI on your local machine or integrate Trivy into your CI/CD pipeline to perform these pre-deployment seans. Trivy will provide you with a list of vulnerabilities
and migconfigurations to address before deploying your workloads

Continuous Seanning of Running Workloads:

After deploying your workloads to Kubernetes, it's essential to set up automated and continuous seanning to detect vulnerabilities in your running workloads. Obgerve

Here are the recommended features for thie stage:

Trivy 8¢ Command: Use the trivy kubernetes command to scan Kubernetes Deployments
or Namespaces. Trivy will ecan the container images used by the running Pods and provide

vulnerability reports

I e/
e"ae/

Develop

N

X

Sean Git repository
Scan third party libraries

Sean filesystems
Sean container image

Test

\
\
\

Scan base image
Sean Dockerfile

Sean kubernetes Manifest

Soan running in-cluster kubernetes workloads

trivy k8s --namespace=kube-system --report=summary deploy

Summary Report for minikube

Workload Assessment
T

T T
) Namespace | Resource | Vulnerabilities | Misconfigurations Secrets
Trivy Operator: Deploy the Trivy Operator in your Kubernetes clugter. The Trivy Operator | pf—— —— —T T
automates the scanning of running workloads by continuously monitoring and seanning 1 W @t o e @ u]t vje @ ujc |u

. . Lp T T T T T T T T T T T T
container images within the clugter kube-system | Deployment/metrics-server | | | | | | 8 | | | | | |
kube-system | Deployment/coredns | 1] | | | |1 S | | | | | |
kube-system | Deployment/logviewer 2 | | | | | | | | 1 | | | | | |
L L 1 Il L Il 1 L L Il 1 L L 1 J

Severities: C=CRITICAL H=HIGH M= L=LOW U=

Gatekeeper

Kuberneteg provides admission controller webhooks ag a mechaniem to decouple poliey decisions from the AP gerver. These webhooks intercept admission requests before
they are persisted as objects in k8s, allowing custom logic and policies to be enforced. Gatekeeper was specifically designed to facilitate customizable admission control
through configuration, rather than requiring code changes. [t brings awareness to the overall state of the cluster, going beyond evaluating a single object during admission.
Gatekeeper integrates with Kubernetes ag a customizable admission webhook. [t leverages the Open Policy Agent (OPA), which i¢ a policy engine hosted by the Cloud Native
Computing Foundation (CNCF), to execute policies in cloud-native environmente.

Constraint Templates are Kubernetes Custom Resource Definitions (CRDs) that define a set of constraints or policies that
can be applied to Kubernetes objects. They act as a template or blueprint for creating individual Constraints. A Constraint

Template defines the structure, parameters, and validation rules for a specific type of constraint that ean be applied to ¢ inislare of C int Templates. They are created based on the defined template and applied to specific Kubernetes resources.
Kubernetes resources.Constraint Templates allow you to define reusable poliies that ¢an be applied to multiple resources Constraints enforce policies by validating the resources against the defined rules and conditions in the Constraint Template. If a resource violates
across your cluster. They provide a way to centralize and standardize the enforcement of constraints any of the defined constraints, it is considered non-compliant
/ When a uger tries to create/update a resource in the eluster, the request first goes to the
Admission control qatekeeper (ag an admission webhook). Gatekeeper checks if the resource satisfies all the
- defined constraints and rejects the request if any poliey ie violated
[Constralnt Templates CRD] [Constraints CRD]
i - - Query
Deploy [Constramt Templates]— —[Constralnts }
T T
| S
L s OPA
Kubernetes objectﬂ Watch/replicate | Gatekeeper

[Em"oroing Resource Limits and Requests for Pods using Gatekeeper]

To enforce a poliey where all Pods must have regource limite and requests set using Gatekeeper, you would create a ConstraintTemplate and then a Constraint uging that template.
Here's how you ean do it:

Create a Constraint Template, which defines the schema and the Rego logie for the poliey. Create a Constraint baged on the ConstraintTemplate you defined. The Constraint specifies the name

The ConstraintTemplate specifies that the Pods must have resource limits and requests and the kind of resources to which the policy applies
apiVersion: constraints.gatekeeper.sh/vibetal
apiVersion: templates.gatekeeper.sh/vibetal kind: K8sRequiredResources
kind: ConstraintTemplate metadata:
metadata: name: pod-must-have-limits
name: k8srequiredresources spec:
spec: match:
crd: kinds:
spec: - apiGroups: [""]
names: kinds: ["Pod"]
kind: K8sRequiredResources
validation:
openAPIV3Schema: . : R il
pikoras After applying the Congtraint, any new Pods that do not have regource limits and requests will be
resources: rejected by the Gatekeeper admission webhook. Existing pods will not be affected by this policy
type: array
items: string
targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8srequiredresources
violation[{"msg": msg}] { this ConstraintTemplate is defining a constraint that requires all containers in Kubernetes resources to have resource limits defined. If any container
container := input.review.object.spec.containers[_] N . B ’ bei .
e e M violates this constraint, Gatekeeper will prevent the resource from being created or modified.
msg)i= sprintf(*container’ <%v> has no memory limit", [container.name]) The first violation rule checks whether a container in the input resource's specification (spec) has defined memory resource limits. If there are no memory
resource limits defined, it generates a violation with a ge indicating that the container lacks memory resource limits.
violation[{"msg": msg}] {
container := input.review.object.spec.containers[_]
not contamer,resources.hm\ts.cpu
msg := sprintf("container <%v> has no CPU limit", [container.name])
}

Storage

In Kuberneteg, containers are typically congidered to be ephemeral and immutable, meaning that they are degigned to be hort-lived and replaceable. Thie approach is well-suited
for stateless applications that don't store or modify persistent data, but it can be challenging for stateful applications that require persistent storage.
To address this challenge, Kubernetes provides various ways to persist data, ranging from simple to complex solutions. Here are some of the approaches to persist data in k8s.

HostPath volumes:

HogtPath volumes allow you to mount a directory from the host node's filesystem into a Pod.
Thie approach ig useful for testing and development purposes, but it ig not recommended for

production environments ag it can create security risks

One important thing to note about HostPath volumes i that they are only accessible
from the node where the pod is running. This means that if the pod is rescheduled to a
different node, it will not have access to the files on the original node's filesystem. Also, if
multiple pods are scheduled on the same node and they use the same HostPath volume,
they will be able to read and write to the came files on the host node's filesystem

EmptyDir volumes:
EmptyDir volumes are a type of temporary storage volume that are created and attached to a Pod when the Pod is created. The data stored in an EmptyDir volume existe only for the
lifetime of the Pod and i¢ deleted when the Pod i¢ deleted. Thege volumes are commonly uged for storing temporary data that is needed by a Pod, such ag cache files or temporary log

When you define an EmptyDir volume, you can specify a size limit for the
volume. If you don't specify a limit, the application running in the pod can
generate any amount of data, which can cause the digk to become full and

Host node’s filesystem

potentially cauge the node to become unavailable

name
spec:

ima

apiVersion: v1
kind: Pod
metadata:

containers:
- name: monitoring-container

volumeMounts:
- name: logs-volume
mountPath: /var/log/monitoring-app
volumes:
- name: logs-volume
emptyDir:

: monitoring-pod

ge: monitoring-image

zeLimit: 1Gi

ConfigMaps and Secrets:
ConfigMaps and Secrets are Kuberneteg objects that allow you to store configuration data and sensitive information such ag
credentiale and keys, respectively. They can be mounted as volumes in a Pod, allowing the Pod to access the data as files

apiVersion: v1
kind: Pod
metadata:
name: web-app
namespace: dev
spec:
containers:
- name: web-app
image: my-web-app-image
volumeMounts:
- mountPath: /app/uploads
name: user-uploads

eWe then mount the user-uploads volume to the container's /app/uploads
directory using the volumeMounts field in the container specification. This
allows the web application to access the user-uploaded files stored in the
/var/uploads directory on the host node's filesystem

user-uploads

/var/uploads

volumes:
- name: user-uploads
hostPath:
T 0We are creating a HostPath volume named user-uploads that
maps to the /var/uploads directory on the host node's filesystem

type field specifies that the directory should be created if it doesn't already exist

EmptyDir volume can be configured to store its data in memory instead of on disk. apiversion: v1

This provides faster access to the data in the volume, which can make it useful for find: Pod
caching data that needs to be accessed frequently name: ML-app
spec:
containers:

- name: video-conv
image: video-conv
volumeMounts:
- name: cache-volume
mountPath: /var/cache/data

cache-volume

RAM

0oo0a

volumes:
- name: cache-volume
The medium field ie uged to indicate the underlying storage medium for a volume. By setting the mediumto |~ © “‘Q" olg
meaium: Memory
"Memory'", the cache-volume volume will be created using the host node's RAM ag the storage medium. sizeLimit: 1Gi

/var/cache/data directory inside the container i¢ mounted to an EmptyDir volume named cache-volume. The cache-volume volume is
configured with a sizeLimit of gigabyte, which mean that it can store up to | gigabyte of data in memory during the lifetime of the Pod

Persistent Volumes (PVs) and Persistent Volume Claims (PVCs):

PVe are independent storage volumes that can be provisioned from different storage providers such ag cloud storage or on-premise storage systems, and PVCs are used to request
storage resources from the PVs. The PVs and PVCs allow you to abstract the underlying storage infrastructure from your application, providing a layer of indirection. You can use
PVe and PVUCs to store data persistently, even if a Pod i deleted or restarted. PVs and PVUCs can be used with different storage backends like NFS,iSCSI, Ceph, ete

To connect PVs and PVUCs to pods, you need to follow these steps:

Provision a Persictent Volume (PV): Ag an administrator, you'll define and create a PV object, specifying the storage capacity, access modes, and Deployment Deployment Statefulset
other properties. This involves interacting with your underlying storage infrastructure, whether it's local disks, network storage, or cloud storage. Pod Pod Pod
Create a Persictent Volume Claim (PUC): A user or developer creates a PUC object, specifying their desired storage capacity, access
modes, and any additional requirements. The PUC will be used by the pod to request storage. sterVomeCian } i Vol
I i |
: Binding PUC to PV: Once the PVC is created, Kubernetes matches it with an available PV that meets the requested eriteria. The ‘ ‘
I binding process ensures that the PUC and PV are associated with each other. e
I |
: Mounting the PV to a pod: [n the pod's specification, you specify the PUC as a volume source. When the pod i scheduled and ‘
I rung, Kubernetes mounts the PV aseociated with the PUC to a specified path within the pod's filesystem. Ry
I

|
|
|
|
|
|
|
|
|
|
|
|
|
2

kind: Per:

name:
spec:

apiVersion: v1
metadata:

capacity:
storage: 40Gi
accessModes:

sistentVolume

nfs-pv1-40g-rw

- ReadWriteMany
nfs:
server: nfs_server_ip
path: /mnt/nfs_share/pv1-40g-rw

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: nfs-pvc-20g
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 15Gi

Pus can be provigioned by an |

I
— I
apiVersion: v1 administrator or dynamically create [

F = E

kind: Pod | |

metadata: PVs have a lifecycle independent of any individual pod, [StorageClass]
name: my-pod meaning they can exist even when no pods are uging them

spec:

containers:
- name: my-container

4 - PUC is a request for storage by a pod. It is a way for pods to dynamically request a specific amount
Image: my-image

is a field that is used to specify how the volume can be mounted and accessed by a pod

volumeMounts:
- name: my-volume
mountPath: /data
volumes:

and type of storage without having to know the details of the underlying storage infrastructure

- name: my-volume
persistentVolumeClaim:
claimName: nfs-pvc-20g

The persistentVolumeReclaimPolicy determines what happens to the contents of a Persistent

Volume (PV) when it i¢ releaged, specifying whether the contents should be retained or deleted

ReadOnlyMany (ROX): Thie access mode allows the volume to be mounted ag read-only by multiple nodes in a

cluster. Thig means that the volume can be mounted by multiple pods at the same time, but cannot be modified.
This mode is typically used for shared read-only storage resources, such as configuration files or static data
ReadWriteMany (RWX): This access mode allows the volume to be mounted ag read-write by multiple nodes in a
cluster. This means that the volume can be mounted by multiple pods at the same time, and can be modified. This

Retain: The PV's contents are retained even after the PV is released. This means that the PV can be reused by
creating a new PUC that requests the same storage capacity and access modes as the original PUC that used the PV

Delete: The PV's contents are deleted when the PV ig released. This means that the PV cannot be reused by creating
anew PUC that requests the came storage capacity and accese modes as the original PUC that used the PV

mode i¢ typically uged for chared read-write storage resources, such ag file shares or databases

|ReadWriteOnce (RWO): Thie accese mode allows the volume to be mounted as read-write by a single node in a
cluster. This meang that the volume can be mounted by only one pod at a time, and is typically used for storage

Recycle (deprecated): The PV's contents are deleted when the PV is released, but the PV is made available
for reuse. However, thie value is deprecated and should not be used in newer versions of Kubernetes

resources that can only be accessed by one node or pod at a time, such ag local storage or block storage.

PVs can be provisioned

* statically or dynamically

Static provisioning involves manually creating PVs and configuring their properties, such

,and (provisioned by an Administrator)

Cluster

»
- S

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Persictent Volume Claims
| (PVCs)
|

pve
l size: 561, (0PS: 4. J

Persistent Volumes(PVs)

Persistent Volumes (PVs) that fit NFS volumes are created
by the cluster administrator on the Kubernetes cluster.

=
0P%:4 e’

File storage

e

NF8 volume, you first need to

When you create a PV that uses an NFS volume, the PV connects to &&

the NFS server and uses it ag the backend storage for the PV

To create a Persistent Volume (PV) in Kubernetes from an existing
on the NFS
server that will make the volume available to the Kubernetes cluster

Lexpor(fs “0 rw,sync,no_subtree_check,no_root_squash,size-400,fsid=0,
sec=: g d:

ip:/mnt/nfs_share/pv1-40g-

[Expurlfs -0 rw,sync,no_subtree_check,no_root_squash,size~20,fsid=0,
oo 0265534, anongid=65534 Ks-ci

ip:/mnt/nfs_share/pv2-20g-n

kind: PersistentVolume
apiVersion: v1
metadata:
name: nfs-pv1-40g-rw
spec:
capacity:
storage: 40Gi
accessModes:
- ReadWriteMany
nfs:
server: nfs_server_ip
path: /mnt/nfs_share/pv1-40g-rw

kind: PersistentVolume
apiVersion: v1
metadata:
name: nfs-pv1-20g-rw
spec:
capacity:
storage: 20Gi
accessModes:
- ReadWriteMany
nfs:
server: nfs_server_ip
path: /mnt/nfs_share/pv2-20g-rw

OTouse persistent storage in their Pod, the uger can run the

command to view the available PV

NAME CAPACITY ~ ACCESS MODES ~ RECLAIM POLICY ~ STATUS CLAIM STORAGECLASS REASON AGE
nfs-pv1-20g-rw 20Gi RWX Retain Available nfs 1d
nfs-pv1-40g-rw 40Gi RWX Retain Available nfs 1d

In order to uge one of these PVs for persictent storage in a Pod, we can create a Persistent Volume Claim (PVC)

that requeste storage from the desired PV

@ Once the PUC is bound to the PV, we can mount the PV to the
Pod by including it a¢ a volume in the Pod definition file.

apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:

- name: my-container
image: my-image
volumeMounts:

- name: my-volume
mountPath: /data
volumes:

- name: my-volume
persistentVolumeClaim:

claimName: nfs-pvc-20g

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: nfs-pvc-20g
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 15Gi

Each PV can be bound to only one PUC at a time , because when a PVC i¢ created,
Kubernetes will try to find an available PV that matches the PUC's requirements baged
on capacity, access mode, and storage class. If a suitable PV is found, the PUC is bound
to that PV, and the PV becomes unavailable for other PUCs to

When the Pod i¢ created, Kubernetes will uge the bound PUC named nfs-pve-20g ag
a volume mount point to access the persistent storage associated with the bound PV.
The volumeMounts section in the Pod specification specifies that the volume chould be
mounted at the path /data within the container, so any data written to that path will be
stored persistently in the PV.

However

and the Pod that wag uging that PUC will no longer be able to access the
data. Thig is because deleting a PUC deletes the binding between the PUC and the PV, which cauges the PV to be
releaced and potentially recycled for use by other PUC

Finalizers

finalizers are markers attached to resources (such as pods, services, or deploymente) to indicate that
some additional eleanup or finalization steps need to be performed before the resource can be fully
deleted. Finalizers are represented as strings and are stored in the metadata of the resource

Some common finalizers you've likely encountered are:

The finalizere above are uged on volumes to prevent accidental deletion

=

Dynamic provigioning allows Kubernetes to automatically create PV when a PUC
is created. Dynamic provisioning can be implemented using StorageClasses

I Cluster —I
| |
| Persistent Volume Claims |
o | | I)
|
| [size: 106, 10PS: 4 J |
| | gce storage provisioner
I : ceph storage provisioner
I e '
-]
R —) S| ! o
I
| |
Dersicte
| |
L J

storage classeg act ag an abstraction layer on top of PVs, allowing you to define a
set of default parameters and policies that are used when dynamically provisioning
new PVg baged on PVC requests

When a PVC is created, it specify a StorageClass to use, which will dictate how the PV is provisioned.
If no StorageClase i specified, the default StorageClase will be uged (if one i¢ defined)

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: my-pvc
spec:

@| storageClassName: gce-pd-storage

accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

kind: StorageClass
metadata:
name: gce-pd-storage
provisioner: kubernetes.io/gce-pd
parameters: "~
type: pd-standard
replication-type: none
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: Immediate

The provicioner field in a StorageClase specifies the name of the provisioner that should be
uged to provision the storage. There are many different provisioners available for different
types of storage, including those for eloud providers like GCE, AWS, and Azure.

Bl The ctorageClassName field in the PUC specification i used to specify the name of

the StorageClags that should be used to provision the requested storage

size, access mode, and storage class

@ Kubernetes first tries to find an existing PV that matches the eriteria specified in the PUC. If no suitable PV i
found , Kubernetes requests the provisioner mapped to the PUC's storage class to create a new volume. The
storage provisioner can be a plugin or a driver that interfaces with the underlying storage system

@ The storage provisioner creates a new PV that matches the PUC's requirements, such ag | S¢. slorage provisionergee

Py
size: [0 s
0Ps:4 =

—

@ Once the new PV is created, Kubernetes binds it to the PUC and the PUC is ready to be used

by a Kubernetes pod. The pod can then mount the volume and use it to store and retrieve data

live

delete

kubectl create

deletion

empty finalizer
Key

finalization

kubectl delete

When you attempt to delete an object in Kubernetes that hag a finalizer associated with it,
the object will remain in the finalization phase until the controller responsible for managing
that object removes the finalizer keys or until the finalizers are explicitly removed by a user.

remove finalizer key

registry delete

StatefulSet]

StatefulSets are a type of workload object in Kubernetes that are used to manage stateful applications. They are designed to handle applications that require unique identities,
stable network addresses, persistent storage ,ordered deployment and sealing, and graceful deletion. Such as databases, message queues, ete. StatefulSets maintain a sticky
identity for each pod, <o even if a pod gete rescheduled, it still maintains the same identity/name. The pods are created from the same spec, but are not interchangeable - each

has a unique persistent D. \
&
[mportant
Characteristice of ste
webapp
Predictable pod name: @ @
In a StatefulSet, each Pod i assigned a predictable name based on the name of the StatefulSet and ite index. L wff:ag_g] L &j&zﬁi } \ :';jji’zi }
For example, if the StatefulSet is named “webapp" and hag three replicas, the Pods will be named “webapp-O," QtatefulSet o
“webapp-1," and "webapp-2." Thig allows for easy identification and reference to specific Pods within the Set <statefulset-name>-<ordinal-index>

Each Pod has a stable hostname baged on its ordinal index

Dns-name T et webapp Fixed individual DNS name:
@ webapp-O @ webapp-1 StatefulSete aleo provide a fixed individual DN'S name for each Pod, based on the predictable name assigned to it. Thie allows

QtatefulQet applicatione to refer to each Pod by a consictent DNS name, even if the Pod i¢ rescheduled to a different node. For example, if the

StatefulSet is named "webapp,” and the Pod is named "webapp-O," the DNS name for that Pod will be "webapp-O.webapp

Headless service: Ordered Pod creation:

StatefulSets are accompanied by a headless service, which allows for direct communication with || StatefulSets ensure that Pods are created in a specific order, with each Pod waiting for the
individual Pods rather than the Service as a whole. This is useful for stateful applications that previous one to be ready before starting. Thig is particularly important for stateful applications

require direct communication between Pods, such as database clusters.

that require specific sequencing of events, such as databage clusters

Jheadless-servicename.namespace .sve.cluster-domain

webapp

Selgcfcr @ o webapp @ @
777)[o0 J . webapp-O) webapp-1)

10.244.83.193 L

Quebapp& }\@webapp—f& }

(

10.244.83.195

10.244.83.196

app: WehﬂPP -he-web.default.cve.clugter-domain 10.244.83.193 70.244.83.194
hg web Qiatofii|Qot
I app: webapp
nslookup __510.244.83.193 L,, webapp—l J
app-service 10.244.83.194 10.244.83.194

-he-web.default.eve.clugter-domain
Why do we need StatefulSets?

Pods are deployed in order from O to N-I, and terminated in reverse order from N-[t0 O.

Consider an example of a stateful application - a database. Databages are typically stateful, meaning they require persictent storage to store their data. They also require stable
network identities to ensure that client applications ean congistently connect to the same ingtance of the databage, If you deploy a databage using a regular Deployment or RS,
Kuberneteg will create multiple replicag of the database, each with its own randomly assigned hostname and [P addregs. Thig can cause problems for the databage, ag the client
applications may not be able to connect to the correct instance of the database, or data may be lost when pods are deleted or recreated. To golve these problems, you can uge a

StatefulSet to manage the deployment and sealing of the databage.

Headless service

A Headless Service is a type of Kubernetes service that does not have a Cluster(P acsigned to it. Instead, it manages the Domain Name System (DNS) records
directly. Thie means that when a client tries to connect to a Pod that is part of the Headless Service, it can use the DNS name agsociated with the Pod's (P
addregs to directly communicate with the Pod. When used with StatefulSets, it allows addressing each Pod individually using their stable hostnames.

apiVersion: v1

Lare J—

kind: Service
metadata: app
name: app-service app:
spec: app: nginx
ports: — i Label
-| p<t:rt: 3306 >l app_o L ng Label “pp i app: nginx
Selector | selector: i i
: app: mysdl : e — Selector 1 app 8kbar7yedp-ag7ha J
clusterlP: None | T i 10.244.83.193
| o 0 | - |
app: nginx ! app: nginx app: nginx app: nginx
e service - 1 app-l J 77| app-cervice app-Bkbar7yedp-nik9l |
| 70.244.83.194 el R 70.244.83.194
nslookup 10.244.83.193 | lookt
A _ _ S | nslookup ——>10.102.156.115 app: nginx
app-service 10.244.83.195 | e _corvi f
‘ L= > 2 LLERERES Sppeervee app-8k6ar7yedp-adnk2
Headless service does not have l app J Clusterlp service hag a unique (P
aDNS name or an [P address T0.244.83.195 address and DNS name 10.244.83.195
Headless-StatefulSet ClusterlP-Deployment
When a client sends traffic to a Headless Service, Kubernetes returns the IO addresses of all the Pods that are backing the When a client sends traffic to the service, Kubernetes chooses one of the Pods based on a load-balancing algorithm.
service, regardless of their status. This means that the client may receive [P addresses for Pods that are not running or areina Regular services use a Cluster[P address to load-balance traffic across the Pods that are backing the service
failed state. The client is then responsible for load-balancing the traffic across the individual Pod [P addresses that are returned
3
[l Regular service provides a single [P address that represents a group of Pods, while a id -
' nginx
Headless Service provides individual DNS names and [P addresses for each Pod in the service : R ‘gl
: ngi L Label
app: nginx _
@ Regular services are typically used for stateless applications that can handle traffic from multiple clients, while PPing . — >JL app 0 J
|
Headlese Services are more ly used for stateful applications that require direct access to individual Pods Cluster\papp g?gy;gfsa s ! 10.244.83.193
|
app: nginx d__1 : nginx
Headless services can be used in combination with regular services to provide both direct access to individual pods app-cervice) g pp-l Epnes
and load-balanced access to the service ag a whole. For example, you might use a headless service to allow datab I |—- - 1 J
nodes to communicate directly with each other, while also exposing a regular service for client applications to connect to } 10-244.83.194
I
l N app: nginx
Regular service hag a virtual Service [P that exists ag iptables or ipvs rules on each node. A new connection to this service [P ig then routed with e o app-2
DNAT to one of the Pod endpoints, to support a form of load balancing across multiple pods.A headless service (that ien't an ExternalName) will create l
DNS A records for any endpoints with matehing labels or name. Connections will go directly to a single pod/endpoint without traversing the service rules. 10.244.83.195

Headless-ClusterlD -StatefulSet

StatefulSets can use two types of storage

|
Shared Storage]~ ——————————————————— beeceeeeeesemmememe *l Dedicated Storage

All Podg in the StatefulSet share the same storage volume. Data ig available to all Pods. Each Pod gete ite own PersistentVolume. Data i¢ igolated between Pods.
Bood for things like caches, tmp files ete. Bood for databages, unique files ete.
ify a i ai ate i 5 i a i . || Don't epecify volumeClaimTemplates. StatefulSet will create a or each Po
Specify a PergistentVolumeClaim template in the sfs spec. All Pods will get a elone of this PUC. | Don't specify volumeClaimTemplates. StatefulSet will ereate a PVC for each Pod
ata ca i i i ame il ating Pods is harder with dedicated storage, may need to coordinate Pod termination to avoid data loss
data can be corrupted if multiple Pods write to the same files Updating Pods is harder with dedicated st , M, d to coordinate Pod termination t d data |
Pv
Statefulset B Statefulset A \.-4
e
Pod e "
Template Template sv
i Pv
persigtentVolume Volume claim e
Claim template =
Persistent Volumes
pNY
The PersictentVolumeClaime(pue) will be created from thic template (PVe)
apiVersion: apps/v1 ainersion: apps/v1
kind: StatefulSet kind: StatefulSet
metadata: metadata:
name: mysql name: mysql-hs
. spec:
spec: serviceName field specifies the name of the Headless Service that controls pselector'
serviceName: mysql-hs the network identity of the StatefulSet's Pods and it is a mandatory filed hL bels:
replicas: 3 [EELElE
selector: apiVersion: v1 app: mysql
; kind: Service
matchLabels: (ERER R .
app: mysql name: mysql-hs replicas: 3
template: Sps;s: templaze: .
metadata: ~ port: 3306 metadata:
el selector: labels:
. app: mysql app: mysql
app: mySqI clusterlP: None _pp ¥sq
spec: SPet:
containers: containers:
- name: mysql pVersion v1 o pame: mysq|
e (s Hevies kind: Pers\‘stentVqume - TER mpsHiest
. E?d template otadate v env:
- name: MYSQL_ROOT_PASSWORD 3 name: mysdl-pv N’/ = WA AL KOO S
value: "yourpassword" labels: e’ valueFrom:
ports: ——— type: local secretKeyRef:
- . apiVersion: v1 spec: name: mysql-secret
- containerPort: 3306 kind: PersistentVolumeClaim capacity: key: root-password
name: mysq|l metadata: storage: 1Gi ts: '
volumeMounts: /.name: mysql-pvc accessModes: Lleinss 2 SE03
- name: mysql-persistent-storage spec: - ReadWriteMany - containerPort:
mountPath: /var/lib/mysq| accessModes: persistentVolumeReclaimPolicy: Retain name: mysql
volumes: - ReadWriteMany storageClassName: manual volumeMounts:
N A storageClassName: manual nfs: - name: mysql-shared-storage
name: mysql persistent-storage resources: path: /srv/nfs/kubedata/pv3 mountPath: 7var/lib/mysgl
persistentVolumeClaim: / requests: server: 192.168.49.1 | I I. e
claimName: mysql-pvc <——=— storage: 1Gi volumeClaimTemplates:
- metadata:
\J N name: mysql-shared-storage
The volumeMounts and volumes are defined in the pod template The PUC must be created beforehand either The PV and PUC are using the “‘manual’ StorageClass. The PUC spec: b £
section of the StatefulSet manifest, which means that they willbe manually or through some automated process ~has requested a capacity of Gi and has been bound to the PV. accessModes: ["ReadWriteMany"]
shared by all pods created by the StatefulSet storageClassName: google-storage
K get pv,pvc resources:
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS AGE requests:
persistentvolume/mysql-pv 1Gi RWM Retain Bound default/mysql-pvc manual 5h27m storage: 10Gi
v
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS ~AGE

volumeClaimTemplates is specified at the StatefulSet level, not in the pod template
persistentvolumeclaim/mysql-pve-sts3 Bound mysql-pv 1Gi RWM manual 5h29m

The "volumeClaimTemplates” field in a StatefulSet is used to define persistent volume claims (PVCs)
that will be used by the pods in the set for their storage needs. When a pod i¢ created or rescheduled,
it will automatically ereate/claim one of these PUCg and use it for ite persistent storage

If you set the storageClassName to the name of a StorageClass that is Kind: StorageClass
configured with a dynamic provisioner, Kubernetes will automatically create a | metadata:
new PV baged on the specifications defined in the volumeClaim Templates section

name: google-storage

How to deploy an application in k8s?]

An application in Kubernetes typically consiste of YAML fileg that define the k8s resources needed to run the application, such ag Deployments, Services, ConfigMaps, and
Secrets. You can deploy the application in Kubernetes manually by creating the YAML files and then using the 'kubectl apply” command to create the Kubernetes resources on
the clugter. Alternatively, you can use deployment tools like Kustomize, Helm, or the Helm Operator to automate the deployment process and simplify the creation of the YAML
files. Thege toole provide a higher-level abstraction for managing Kuberneteg resources and can make it easier to deploy and manage complex applications in Kubernetes.

Manual Deployment:
Manually deploying applications in Kubernetes involves creating YAML files that define the k8s resources needed to run the application, such as deployments, services, and
config maps. You would then use the kubectl apply command to create those resources on the Kubernetes cluster.

[gfa‘\ﬁ'[gef][ConfigMap][Depoyment][Service] kubect! apply -f deployment.yml Thig approach can be useful for simple applications or for users who prefer a more hands-on approach,

kubectl apply -f service.yml A q A -
[Depoyment][Secret][Service][Ingress] kubect! apply -f statfulset.yml but it can be time-consuming and error-prone for more complex applications

[Servieereouni][Pve Igforage(llass][Pve] kubect! apply -f serviceaccount.yml

My-Application

Kustomize
Kustomize i¢ a tool for managing k8s manifest files using a declarative approach. It allows you to define a set of base manifests that define the desired state of your Kubernetes
regourceg, and then apply changes using composition and customization. The bagie workflow of Kustomize consists of the following steps:

apiVersion: apps/v1
kind: Deployment
metadata:
name:
labels:

app: nginx

kind: Kustomization
resources:

- deployment.yaml

- service.yam|

- statfulset.yaml|

- serviceaccount.yaml

Create a base directory containing your Kubernetes manifests. Thig directory represents the

desired state of your application or environment t——base
L—— deployment.yaml

pec:
replicas: 1

Define a kustomization.yaml file in the bage directory. This file specifies the bage regources to L— service.yaml

use, ag well ag any additional resources that should be added, modified, or removed — statfulset.yam - configmap.yaml
Create overlay directories for each environment or application variant, if needed. These overlay configmap.yaml @ Version: kustomize config.ks io/vIbetal

L——gecret .yaml kind: Kustomization

bases

|
|
|
| L——serviceaccount.yaml g secretyaml
|
directories contain additional resources or modificationg to apply on top of the base resources :

ase
namePrefix: dev-

L—kustomization.yaml

| | f——dev patchesStrategicMerge:
deployment.yam o O
ploy ? L——kustomization.yaml apiVersion: apps/v1

service.yam| kind: Deployment

’ff [sy [PrOd metadata:
.. A : nginx-depl t

statfulset.yam o Bace kustomization.yaml Spr;acr:ne nginx-deploymen

serviceaccount.yaml replicas: 3

eonﬁgmap.yaml Yamls with common flelds This kustomization.yaml file applies a patch to the resourcein
9 Overlags cecret gam[required for all environments the bage directory, and adds a prefix “dev-" to the metadata name of all resources
Yamls with Ous.fomizaﬁon kustomization.yaml et A Each overlay directory containg
ag per the Environment | akustomization.yaml file that specifies the base to use and any patches to apply

apiVersion: kustomize.config.k8s.io/v1betal
Apei® Aeree kind: Kustomizati
kustomization.yaml kustomization.yaml e romieation
se basee specifies the base directory to use, in this case ../base
Dev Prod namePrefix: prod-) . L e -
| patchesJson6902: if the original name of the dep resource is "nginx-dep it
. . N N - target: will be renamed to “prod-nginx-deployment” in the final set of manifests.
J e Build customised Manifests for each Environment R ! ’

The pateh replaces the replicas field with a value of 5

name: nginx-deployment

Kustomize Pa}z’; ';emace patehesTson6902 field s used to apply JSON patehes, which are a more flexible
path: /spec/replicas
value: 5

and expressive way to modify resources compared to patchesStrategicMerge.

Deploy to dev Deploy to prod

Dev cluster Prod cluster
Helm

Helm is a widely-used package manager for Kubernetes that simplifies the deployment and management of applications on a k8s cluster. [t enables developers to package their
applications as charts, which are reusable and shareable bundles that contain all the resources required to deploy an application on a Kubernetes cluster. With Helm, users can
eagily search for charts, inctall and upgrade applicationg, rollback changes, and manage dependencies through a straightforward command-line interface. Additionally, Helm
supporte versioning, which allows ugers to track changes to their applications over time and roll back to previous versions if necessary

Helm uses a packaging format called "charts". A chart is a collection of files that deseribe a related set of kubernetes resources.For example,
[QtatfulQet][ConfigMap][Depoyment][Qervice] ingtead of manually creating deployments, serviceg, and other K8¢ objects, you can package these into a Helm chart. Then, anyone can easily
deploy your application by ingtalling the chart.

[Depogmeni][Secret][Service][Ingress]

[ServiceAccount][Dve Igtorage(‘,lass I Due] A Helm chart typically includes the following files: e wordpress

description: A Helm chart for deploying

Template . o - . o
P Chart.yaml: This s the core file which includes the name, deseription, and version of the chart. This file is o aess o < bermetes
values.yam| () chart.yaml used by Helm to identify the chart and to provide information to the user when installing or upgrading the chart || sor eers. >
H | h - name: Your Name
elm chart email: your@email.com
]) wordpress:
values.yaml: This file contains the default values for the chart's parameters. These parameters are used in the templates o || " image: wordpress:s.8.0-php7.4-apache
imagePullPolicy: IfNotPresent ”
generate the Kubernetes YAML files. The uger can override these values during ingtallation or upgrade using the --set flag replicaCount: 1 o ghans o o car o the bahss nl Hesd
then run the helm upgrade command

or a values file. This file is used to allow ugers to customize the behavior of the chart without modifying the templates directly. The values i this e are used by th templates n the
templates/ directory to generate the k&8s YAML files

The template syntax, enclosed in double curly braces ({{ }}),
is used to reference the values specified in values.yaml

apiVersion: apps/v1
templates/ : Thig directory contains the Kubernetes YAML files that define the resources to be deployed. These files are usually written in a templating language | | e serorment
like Go templating or Helm's own template language. The templates can include placeholders for the values defined in the values.yaml file. The templates can also el

app: wordpress

include logic to conditionally include or exclude resources based on the values of the parameters =

replicas: {{ .Values.wordpress.replicaCount }

me }}-wordpress.

spec:
containers:
- name: wordpress
image: {{ Values.wordpress.image }
imagePullPolicy: {{ Value: ess.imagePullPolicy

helpers.ipl : This file contains reusable snippets of code that can be used in the templates. These snippets can be used to simplify the templates and make them more b
T name: ety
readable. For example, a helper function might generate a random password or generate a unique name for a resource.

containerPort: 80

Do you want to deploy an application using Helm in Kubernetes? Here are the general steps to follow

Ingtall Helm: You need to ingtall Helm on your local machlne Add 1he Helm chart repository: Add the Helm chart repository || Search for the Helm chart: Use the helm search command Create a values.yam file to
or on the cluster where you will be deploying the app . || that ing the application you want to deploy using the helm || to search for the Helm chart that contains the application || configure the Helm chart. Thig file containg the values
You can follow the official Helm installation guide for your repo add command. You can specify a name for the repository || you want to deploy. You can specify the repository name || that will be used to replace the placeholders in the
operating system to install Helm. and the URL of the repository. or search all repositories. Kubernetes resource files.

Inctall the Helm chart: Uge the helm ingtall command to intall the Helm ehart || Verify the deployment: After the Helm chart hae beeninstalled, || Upgrade or rollback the Helm chart: If you need to make changes to the application, you ean use
to the Kubernetes cluster. You can specify the releage name, namespace, and || you can use kubectl commands to verify that the Kubernetes the helm upgrade command to upgrade the Helm chart. If there are issues with the new version,
any other required parameters uging the command line or a YAML file regources have been created and are running correetly you can use the helm rollback d to revert to a previous version

(Helmohart] | | (" Helmchart |
[Howto deloy an ppleatonsch s WrdPress from a el repostoryusing Heln? | | =25 | - 0y Ay
—HELM-— @

Svc

Namespace

Helnchar Cluster
Helm repositories are collctions of Wordpress
; Kaged Kubernet y
0 Add the WordPress Helm chart repository: e
you need to add the WordPress Helm chart repository to your local

Helm installation. You can do this by running the following d f I

Helm repositories | | Helm repositories

|

[helm repo add bitnami https://charts.bitnami.com/bitnami] better to create a Kubernetes namespace for your WordPress installation

The Bitnami Helm repository contains a variety of charts for popular Thig step ensures that Helm has the latest versiong in order to isolate the resourceg associated with your WordPress

applications like WordPrese, MySQL. of all the charts from the Bitnami repository. deployment from other regources running in the same Kubernetes cluster

helm repo update [kubectl create namespace wordpress}

—@ |fyouwant fo customize the installation, you can pass additional parameters to the Helm chart using the --set flag. For
example, you can set a custom password for the WordPress administrator account by running the following command

Customize the WordPress deployment:
Before deploying WordPress, let's customize some values. The
default configuration can be obtained using the following command:

[helm show values bitnami/wordpress] = RNOICPIESSEM IS AN EXAmPIEEo

~-cet flag when you install the chart or by creating a

B8 WordPrece Helm chart comes with a default values file (values.yaml) which contains all the configuration options. We'l create
values.yaml file that overrides the default values

You can customize the values in a Helm chart by using the |
I a custom values file (values.yaml) o override some of these defaults, and customize the settings according to ours needs

wordpressUsername: myusername es
0 Ingtall the chart: wordpressPassword: mypassword
8 wordpress:
Once you have customized the values, you can install the chart on your persistence:
Kubernetes clugter using the helm install command. to ingtall the WordPress size: 20Gi
P S #mariadb.auth.rootP: ord= ROOT_PAS
chart with a releage name of my-wordpress, run the following command: m‘a'ri; d‘b‘ e - ’
auth:
[helm install my-wordpress bitnami/wordpress --namespace wordpress --create-namespace -f values.yaml --set service.type=NodePort } rootPassword: ROOT_PASSWORD
The my-wordpress argument is the name of the releage that Helm will uge to track the ingtallation, This command installs WordPress using the values.yaml
and the --namespace wordpress argument specifies the namespace in which to install WordPress file and sets the service.type value to NodePort
Verify the chart:
helm list -n wordpress
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
my-wordpress wordpress 1 2023-07-28 20:40:28.214200542 +03 +03 deployed wordpress-16.1.33 h
.
N releaselName A releaceis aninstance of an application deployed by Helm from a chart
[Upgrade or rollback the chart: }
[helm upgrade -f values2.yaml my-wordpress bitnami/wordpress -n wordpress }[helm upgrade [RELEASE] [CHART] [flags]] Houw to get custom values for a helm release?

helm get values my-wordpress --revision=2 -n wordpress
USER-SUPPLIED VALUES:

wordpressPassword: "qazwsx"

wordpressUsername: daniele

helm list -n wordpress
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
my-wordpress wordpress 2 2023-09-26 11:42:00.841703412 +03 +03 deployed wordpress-17.1.6 6.3.1

A revision ig a versioned change to the releace. Each time a releage is ingtalled or upgraded, a new revision is created incrementally (rev 1, 2, 3 ete).

[helm rollback my-wordpress 1 -n wordpress][helm rollback RELEASE_NAME REVISION_NUMBER J

operator

operator is a method of packaging, deploying, and managing a specific application or workload on a Kubernetes cluster. Operators are essentially Kubernetes controllers that
are designed to automate the deployment and management of complex applications or services

An operator typically consists of custom resources, custom controllers, and a set of Kuberneteg objects that are defined to manage the application or workload. The custom
regource is a Kubernetes object that represents the desired state of the application or workload, while the custom controller ie respongible for ensuring that the actual state of

Kind: StatefulSet

Managing stateful application in Kubernetes can be challenging, but operators are particularly well-suited for
this tagk. For example, an operator for a database application might automate taske such as provisioning new StatefulSet CRD Controller StatefulSet |~ H
databage ingtances, sealing the databage up or down, performing backups and restores, and handling failovers Operator ~<
How to scal tatefulSet?
Operators are typically implemented using the Kubernetes Operator SDK, which provides owto scaleup a St e{u Se operafors can definitly help o automate many routine tasks
How to do leader election in Kubernetes? associated with managing complex applications in Kubernetes, &

the application or workload matches the desired state.

Kind: myapp

a set of tools and libraries for building, testing, and deploying operators How to migrate databaces? this can free up human operators to focus on more strategic tasks

[ngrese ie an APl object in Kubernetes that allows access to your Kubernetes services from outside the Kubernetes cluster. [t provides load balancing, SSL termination and
name-based virtual hosting for your services, In other words, it's a way for your applications to expoge URLs to the outside world.

Ingrese provides external reachable URLs, SSL termination and name-based Ingress provides layer 7 load balancing. [t acte ag a reverse proxy AU G
virtual hosting to services in the clugter. This means you can route requests to and load balances traffic to different services in your Kubernetes ___ ExternallB
different services based on the request host or path. cluster
[lngress object allows you to expose multiple services through a single [P address] [Ingrese]

If you uge the LoadBalancer service type, the gervice ic made available to clients outside the cluster through a load balancer. Thie approach e fine if you only need to

expose a single service externally, but it becomes problematic with large numbers of services, since each service needs its own public [P address.Fortunately, by exposing
thege services through an Ingress object instead, you only need a single [P address.

Service
(Cluster(p) “APREWEAE

Service
(Clusterip) @PPEVide0

[lngress congiste of two main components:] ngress controller

ngress resource is a Kubernetes APl object that defines the rules for how external traffic should be directed to services within a

cluster. The ingress resource specifies the rules for routing traffic based on the host name, path, and other eriteria. It also specifies
the backend services that should receive the traffic.

: wear app: wear app: wear app: video : video app: video
app: Pp: 'Pp: app: Vi pp: V]

Deployment wear-app

Deployment Video-app

T —
(Headless) “PPINSAE. _goloptor

Ingress controller ig regpongible for implementing the rules defined in the ingress resource and handling external traffic based on

’ Pod
thege rules. Ingress controllers like Nginx use ConfigMape to store the configuration for the ingress regources and dynamically ap;mml g | Label
generate Nginx configuration baged on the rules defined in the ingress resource SW ey

Kubernetes only provides the Ingress resource and needs a separate Ingress Controller to gaticfy the Ingress. There are several optiong
available, but for the purpoge of thig guide, we'll uge the Nginx Ingress Controller.Install the Nginx Ingress Controller

In order for the Ingress resource to work, the cluster must have an ingress controller running.Unlike other types of controllers which run ag part of the kube-controller-manager binary, Ingress controllers are not started automatically with a cluster.

You have to select an Ingrese Controller compatible with your setup and start it manually. (The actual implementation of Ingress i done by Ingrese Controllers)

How Does an Ingress Controller Work?
Here’s a simplified view of how an Ingress Controller works:
1 You define an Ingress Resource in your cluster, which has a set of routing rules associated with it.
2 The Ingress Controller continuously watches for updates to Ingress Resources , Service, and Endpoints or EndpointSlice objects. When it detects a new or modified these objects, the
controller is notified. it reads the information in these objects to understand what traffic routing changes it needs to make.
3 The Ingress Controller configures the load balancer to implement the desired traffic routing.

e The Ingress Controller continuously watches for updates to Ingress Resources, Service, and Endpoints or EndpointSlice objects.

When an ingress resource is created or updated, the ingress controller reads the configuration information from the

(
" o ingress controller ngress corresponding ConfigMap and generates the configuration for the load balancer baged on the rules defined in the ingrese
shop.com/video o a . .
Clent }-1 o comywear | u_ R ; resources EndpointSlices resource. The load balancer configuration is then dynamically updated to reflect the changes in the ingress resource.
AN S o everse Proxy

-\9 [ngress resource is the YAML configuration that defines the rules for routing traffic.
,,,,,,,,,, Service apiVersion: networking.k8s.io/v1 The ingress controller uses the service name specified in the ingress rules to lookup the [P addresses of
server { X 6 video-service. kind: Ingress the pods backing that service. It then routes traffic to those pods according to the path matching rules
ﬁ::::rggan.\e shop.com ; Pod metadata: defined in the ingrese
listen 443 ss| http2 ; app: video | app: video name: ingress-path
location /video/ { 5T TS spec:
set $namespace "default"; Deploument: video-abp rules:
set $ingress_name "shop-ingress”; ploy! UL - host: shop.com
set $service_name "video-service"; shop.com/wear Service o
set $service_port "http"; wear-gervice Fs
set $location_path "/video"; .

- path: /video

" Ingress resources define rules for routing HTTP/HTTPS traffic to servicesin a

pathType: Prefix

apiVersion: v1 10774 10145 backend: Kubernetes cluster. They specify path-baged rules that map URLs to backend services.
kind: Service .
location /wear/ { e Deployment: wear-app service:
set $namespace "default"; (TR TRl name: video-service kubect! describe ingress ingress-path
set $ingress_name "shop-ingress"; Sp::‘;m,v port: Name: ingress-path
set $service_name "wear-service"; o wear name: http Namespace: default
set $service_port "http"; ports: - path: /wear Sdfdre\stsia rendt <defoutt
) set ;B\ocation_path "/wear"; - name: http pathType: Prefix Rj\ea: ackend: <default>
port: 80 g
targetPort: 8080 backend: Host Path Backends
service: S e e
" " " . N . e name: wear-service shop.com
when configuring an Ingress resource, the "backend" field specifies the service that should receive the forwarded traffic. However, it's important - video video-service:80 (10.1.1.2:5678, 10.1.1.3:5678)
ort:
1o note that the traffic never directly reaches the service itself. [nstead, controller uses service endpoints to route the traffic, not the service. p /wear wear-service:80 (10.1.1.4:5678, 10.1.1.5:5678)
number: 80 Events: <none>

there is one rule specified for the ‘shop.com host, and under that rule, there are two paths Ingress controllers often include a default backend component that handles traffic
(*/video” and */wear’) defined for routing traffic to their respective backend services. that doesn't match any [ngress rules.

How to customize Nginx Ingress Controller?

Helm Chart Values: If deploying the Ingress controller via Helm chart, you ean customize settings by overriding chart values. The Helm chart exposes many config settings as values.
ConfigMap: uging a ConfigMap to cet global configuration in NGINX, For example, you can specify custom log formate, change timeout values, enable features like GeolP, ete
Annotation: uge thig if you want a specific configuration for a particular ingress rule.

[How to enable Basic Authentication for an ingress rule in Kubernetes?]

This example shows how to add authentication in a Ingress rule using a secret that containg a file generated with htpasswd

@ Generate the base64 encoded ucer/pass combo: © Configure the Ingress rule to use the basic authentication secret
htpasswd -nbm arye Heisenberg | base64 4}7
© Convert hipasswd into a secret:
Path >> /admin] [/video } L /Wear 1
kubectl create secret generic shop-basic-auth --from-literal=auth=<base64 output>]
Or
apiVersion: v1 nginx.ingress.kubernetes.io/auth-type: basic
kind: Secret ng| : shop-basic-auth
metadata: 1: Authentication Required wear-service
name: shop-basic-auth Sp:j;S_
namespace: default - h‘osl' E on
data: http:
> auth: YXJ5ZTokYXByMSQxbzAzWEITQIRJVFYudWhOdmcuVmV5d0t5a0s1cC4vCgo= paths:
- path: /admin
pathType: Prefix
backend:

service:

generic shop-basic-auth —from-literal=username from-literal=p

name: managementsevice || kubernetes.github.io/Ingress-nginx/examples/
port: g
name: http You can find more examples in this link

{How to enable TLS for an ingress rule in Kubernetes?]

Method [: Self-gigned certificate

kind: Ingress
-~ Generate a self-signed certificate and private key: metadata:

name: ingress-path
annotations:

[openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/CN=arye.ir"]
Thie YAML manifest describes an Ingress resource that enables TLS for the host

Create a secret containing the key and certificate: soec: T “arye.ir", redirects HTTP traffic to HTTPS, and defines a routing rule for the path
2 | ; “/booklet" to the backend service named "book-service" on the specified port
[kubect! create secret tls t --key tls.key --cert tls.crt tls:
- hosts:
- anye.r
Method 2: Use Certbot secretName: tls-secret
Configure Ingress to Use the Certificate rules:
" . /Y >| - host: arye
- Use Certbot to generate a TLS certificate for your domain. Reference ilc-cecret secret in your Ingress resource o
[certbot --manual --preferred-challenges dns certonly -d arye.ir} paths:

- path: /booklet

Create a Kubernetes secret that contains the private key and the certificate pathType: Prefix

backend
[kubectl create secret tls tls-secret —-key privkey.pem --cert cert.pem service:
name: book-service
port:
Method 3: Use Cert-manager name: http

You can find more annotationg in thig link <

Cert-mana ger [h,t!p,S-,/!gI!hl{b,-c,qm/,kyl;@rngt,e,s{mgr,e§s, -nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md

Cert-manager ig a certificate management controller for k8s. It helps with issuing and renewing certificates from various sources, such ag Let's Encrypt, HashiCorp Vault, Venafi.
cert-manager engures certificates are valid and up to date, and will attempt to renew certificates at a configured time before expiry.

[lssuing and renewing certificates from a variety of sourees] [DNSOI and HTTPO!I ACME challenge solver support for Let's Encrypt certificates][lssuing certificates for Certificate resources using CRDs]

main features of

cert-manager

[Aufomafed creation and updating of k8s Secrets with certificates] [lssuing certificates for Ingress resources with annotations]

Cert-manager mainly uses two different custom Kubernetes resources (CRDg) to configure and control how it operates, as well ag to store state. These resources are [ssuers and Certificates.
[ssuer ig an object that represents a particular certificate authority or a specific method for issuing certificates. It defines the parameters and configurations required to request certificates.
An lgsuer can be used to igsue certificates within a single namespace or cluster in Kubernetes. There are different types of issuers supported by CertManager, such as:

ACME lssuer: This type of issuer integrates with the Automated Certificate Management CA lssuer: This type of issuer is used when you have an existing Self-Signed lssuer: This type of issuer is used when you want to
Environment (ACME) protocol, which is commonly used by Let's Enerypt and other CAs. certificate authority (CA) that you want to uge for issuing certificates. | | generate self-signed certificates within the Kubernetes cluster. It
ACME igsuers automate the process of obtaining and renewing certificates. [t requires you to provide the CA's certificate and private key. is typically used for testing or development purposes
Certificates resources allow you to specify the details of the certificate you want to request. They reference an issuer to define how they'll be issued. (5) Lets KB
ncryp

] ([ngress]

[what happens when you create a Certificate resource in cert-manager:

[Service][Cert-gecret

I. You create a Certificate resource with details like the domain name, secret name to store certificate, and reference to the lssuer

2. The cert-manager controller sees the new Certificate and kicks off the issuance process QSUER

3. cert-manager first checks if the referenced lssuer exists and is valid. The lssuer has the details for the certificate authority type:ACME

4. cert-manager requests the certificate authority (CA) like Let's Encrypt to issue a certificate for the requested domain Cluster Domain:arye.ir ||Qerver:Let's Encrypt

. The CA validates that you own/control the domain name by performing a challenge. For example, with HTTP challenge, you need to have a temporary file served on the domain

o w

Once domain ownership is validated, the CA issues the signed certificate. The certificate is returned to cert-manager

N

cert-manager takes the certificate and creates or updates the Kubernetes secret defined in the Certificate. Thie secret will contain the certificate and private key.

[How can lissue a certificate for the domain arye.ir using cert-manager from Let's Enerypt?]

Configure Let's Encrypt Issuer GESErtailegy Issue a Certificate pinramy Configure Ingress to Use the Certificate gy Validate the Setup
|

Cert-manager uges 'lssuer’ or ‘Clusterlssuer’ resources to represent | Create a certificate resource to obtain the certificate Your Ingress configuration should uge the Check if the certificate hag
certificate authorities. We'll create a ‘Clusterlssuer’ for Let's Encrgpf% from Let's Encrypt for the specified domain. secret arye-ir-tls for its TLS configuration been igsued successfully
|
apiVersion: cert-manager.io/v1. | apiVersion: cert-manager.io/v1. apiVersion: networking.k8s.io/v1 (kubectl describe certificate aryefirfcert}
kind: Clusterlssuer | kind: Certificate kind: Ingress
metadata: | metadata: metadata: Name: arye-ir-cert
name: letsencrypt-prod I name: arye-ir-cert O ER eSS Namespace: ~ default
X i - anel Labels: <none>
spec: | namespace: default spec: Annotations: <none>
acme: | spec: tls: AP| Version: cert-manager.io/v1
| secretName: arye-ir-tls - hosts: Kind: Certificate
server: https://acme-v02.api.letsencrypt.org/directory | issuerRef: p———
| name: letsencrypt-prod - ;.a;ye:ir Spcec: .
m: : Harye.r ommon Name: arye.ir
email: your-email@your-domain.com | kind: Clusterlssuer secretName: arye-ir-tls DNS Names:
! I commonName: arye.ir rules: aryedr
privateKeySecretRef: I dnsNames: - host: arye.ir Issuer Ref:
name: letsencrypt-prod - arye.ir http: Group: cert-manager.io
: - *arye.ir FEtfic :md: f\\:sterlssufr :
. vl) jame: etsencrypt-pro
SolvErs | duration: 90d - pathType: Prefix Secret Name: ~tis-secret
- http01: I path: "/" Status:
RS After a few moments, cert-m: should issue a certificate ft domai Dackend: Conditions:
class: nginx | After a few moments, cert-manager should issue a cerfifloate for your domain service: Last Transition Time: 2023-09-27T10:01:00Z
: and siore itin the secre'. specified in fhe'czrﬁﬁca'e regource. You can verify that FEIES SV Message: ~Certificate is up to date and has not expired
privateleySecretRef specifies the name of the Kubernetes secret that will be used to store | (i Blrol e e ¥ per T B e port: Not After: 2024-09-27T10:00:00
the private key for the certificate. | [kubectl describe secret arye-ir-tls }> Ce number: 80 Events: snone
solvers specifies the method for verifying ownership of the domain. In this case, we are using l :EE:Y 2‘371054 ".,yy'f;

the HTTP-OI challenge, which involves creating a temporary file in the web root of the domain
and responding to an HTTP request to that file. The ingress field specifies that we will use an
Ingress resource to serve the challenge.

| secretName specifies the name of the Kubernetes secret that will be used to store the TLS kind: Ingress
| certificate and private key. metadata:

name: arye.ir-ingre
issuerRef specifies the name and kind of the Kubernetes resource that is used ag the issuer for ame: arye.lrringress

annotations

this certificate. In this case, we are using the previously defined letsencrypt-prod Clusterlssuer s

commonName specifies the common name for the TLS certificate. [n this cage, it is set to arye.ir.

|
|
|
this Clusterlssuer can be referenced by other resources like Certificate or | dnsNames specifies the list of DNS names for which the TLS certificate should be issued. In
ingress to automatically generate and manage self-signed certificates. | this case, we are issuing the certificate for arye.ir and all subdomaing of the pecified domain

|

|

|

kind: Clusterlssuer Youcan Go"ﬁgure TLS for |"gregs using mls:sc.:retName: rvegate cert-manager.io/ cluster-issuer: References

metadata: annotations instead of Certificate resources iy e the lssuer resource in cert-manager that wil
name: SCHS\gﬁCd'\SSUCr T be uged to obfain thecar’iﬁba'e

spec: ° Use annotations for basic, single TLS certificate configuration. Simpler, but less flexible.

selfSigned: {} ° Use Certificate resources for multiple certificates, automation, and advanced management. More complex, but more flexible and powerful

Add-ong

Kubernetes has a rich ecosystem of add-ons and extensiong that provide additional functionality and features to enhance and extend the capabilities of a Kubernetes cluster.
So far, we have covered a few of these add-ong in the booklet. Now, let's introduce some additional add-ons that ean further enhance your Kubernetes experience:

00

N~

Argo CD ie a powerful open-gource tool designed for Kubernetes, enabling GitOps continuous delivery. [t simplifies application deployment and management by utilizing a declarative approach. With Argo CD,
you can define the desired state of your applications uging Kubernetes manifests stored in a Git repository. [t provides a user-friendly graphical interface to monitor application status, track changes, and roll
back if needed. By following GitOps principles, Argo CD ensures that your cluster's configuration matches the desired state defined in the repository, automatically deploying and updating applications.

A i

Service mesh add-ons, like [stio and Linkerd, are powerful tools that enhance the networking and observability capabilities of microservices within a Kubernetes cluster. By integrating transparently with the
cluster, they offer advanced features for traffic management, security, and distributed tracing. Thege service mesh golutions enable fine-grained control over traffic routing, load balancing, and fault tolerance
mechanieme, enguring efficient and reliable communication between microgervices. With built-in security features like mutual TLS authentication and encryption, they provide robust protection for service-to-
service communication. Additionally, service mech add-ons enable comprehensive observability with distributed tracing, metrice collection, and logging, allowing for deep insights into the behavior and
performance of microservices.

Ccma
@]

Rook and Longhorn are two notable storage-related add-ons for Kubernetes. Rook i¢ a cloud-native storage orchestrator that enables the deployment and management of various storage golutions ag native
Kubernetes resources. [t automateg the provigioning, scaling, and lifecycle management of distributed storage systems like Ceph, CockroachDB, and more. On the other hand, Longhorn is a lightweight, open-
source distributed block storage system built for Kubernetes. [t provides reliable, replicated block storage for stateful applications, offering features like snapshots, backups, and volume expansion. Together,
Rook and Longhorn empower Kubernetes ugers to easily deploy and manage resilient, scalable, and persistent storage solutions within their clusters, enhancing the availability and data management

capabilities of their applications.
-|m>
Qi. -k

Monitoring and logging add-one, such ag Prometheus, facilitate the collection and storage of time-series data and metrice from diverse Kubernetes componente and applications, enabling comprehengive
analygic and alerting capabilities. Additionally, Fluentd serves ag a dependable log aggregation tool, simplifying the gathering, parsing, and forwarding of logs from multiple sources to ensure centralized and

lable log management. The ELK (Elasti ch, Logstach, and Kibana) stack offers a comprehengive golution for monitoring and logging, utilizing Elasticgearch for efficient log indexing and gearching,
Logstash for data processing and filtering, and Kibana for visualizing and analyzing log data. Together, these add-ong provide Kubernetes users with powerful tools for monitoring performance, detecting
issues, and gaining valuable insights to optimize their Kuberneteg environments.

F "1 CLOUD NATIVE
LANDSCAPE

Additionally, The CNCF landscape is an excellent resource for discovering and exploring a vast array of add-ons and tools within the eloud-native ecosystem. [t offers a visual repregentation of different
projects and categories, allowing users to navigate through various technologies that can enhance their Kubernetes deployments. Whether you're looking for monitoring and observability toole, networking
solutions, or storage options, the CNCF landscape provides a comprehensive overview of the available options. By exploring the CNCF landscape, you can expand your knowledge and make informed
decigions about incorporating the right add-ons and tools into your Kuberneteg and eloud-native environments. lt's a valuable resource for staying up-to-date with the latest innovations and finding the best
solutions to meet your specific needs.

