
 Arye Afshari
 Mohsen Shojaei Yegane

 Kubernetes
 pocket guide

Arye afshari
Learnk8s. .Information-sha256:026c0899de80acf5058d3c6add117633058460b7317d731d2e911bf70b9e5c25

The Kubernetes Pocket Guide is a small and easy-to-use document that helps you
understand Kubernetes better. Inside this booklet, we have taken great care to gather
and explain all the important ideas and knowledge about Kubernetes in a simple way.
Whether you're just starting out or already have experience with it, this guide will be
your helpful companion. It provides clear explanations and makes it easier for you to
learn the basics of Kubernetes

Note: The content of this booklet is written based on Kubernetes version 1.25

Sponsored by learnk8s, this booklet is offered freely to the public.
Learnk8s, an esteemed educational platform, specializes in Kubernetes
training courses, workshops, and educational articles. Additionally, this
booklet has another standardized format that was produced for learnk8s

Table of Contents
Core Concept
——————————
4 Kubernetes
5 Kubernetes Architecture
6 Methods of building k8s cluster
6 Kubectl
7 Pod
8 Workload
8 Deployment
9 Namespace
9 Resource quota, Limit range
9 Resource requirements & Limit
10 Service
11 Endpoint
11 Dns
16 Daemonset
16 Static pod
17 Autoscaling (HPA ,VPA)
20 Job & Cronjob
36 Statefulset
36 Headless service
37 Statefulset & storage

12 How scheduling works?
12 Label & selector
12 Annotations
12 Node selector
13 Affinity & anti-affinity
13 Taint & toleration
14 Taint/tolerate & node affinity
15 Priority class & preemption
15 Pod distribution budget
15 Bin packing

Scheduling
——————————

Lifecycle Management
———————————————
18 Configmap, Secret
19 Init Container
19 Pod Lifecycle
20 Sidecar Container
21 Rollout & Rollback
22 Probes
23 Node Maintenance
24 Cluster upgrade
25 Backup & Restore

26 Security
27 Authentication
27 Authorization (RBAC)
27 Admission control
28 Service Account
29 Api groups
29 Kubeconfig
30 Authentication with X509
31 Auditing
31 RuntimeClass
32 Network Policy
32 Security Context
32 Image security
33 Gatekeeper

Security
——————

34 HostPath volume
34 EmptyDir volume
34 Persistent volume(pv) & pvc
35 Static & Dynamic provisioning

Storage
——————

38 How to deploy an application in k8s?
38 Kustomize
38 Helm
39 Operator
40 Ingress
41 Cert-Manager

Addons
——————

.

026c0899de80acf5058d3c6add117633058460b7317d731d2e911bf70b9e5c25
יראשפא הירא

 Kubernetes(k8s)

Container orchestration is the process of managing, deploying, and scaling containers in a distributed environment. It involves automating the deployment and management of containerized
applications across a cluster of hosts, and ensuring that the containers are running as expected. Container orchestration systems typically provide features such as container scheduling, load
balancing, service discovery, health monitoring, and automated scaling based on demand. Today, Kubernetes is the most popular container orchestration platform used globally

k8s Cluster is a set of nodes that work together to run containerized applications. The nodes can be virtual or physical machines, and
they typically run Linux as the operating system. The cluster consists of two main types of nodes:

Kubernetes, also known as K8s, is an open-source platform for managing containerized workloads and services. It provides a way to deploy, scale, and manage
containerized applications across a cluster of nodes. Kubernetes was originally developed by Google and is now maintained by the Cloud Native Computing
Foundation (CNCF)

Kubernetes provides a set of powerful abstractions and APIs for managing containerized applications and their dependencies in a standardized and consistent
way. It allows you to declaratively define your application's desired state in the form of a set of Kubernetes objects (such as pods, services, deployments, config
maps, and many others), and then Kubernetes takes care of actually running and managing those objects on a cluster of machines

Kubernetes allows you to choose the Container Runtime Interface (CRI), Container Network Interface (CNI), and Container Storage Interface (CSI) that
you want to use with your cluster

WebApps & Services

Service Management

Scheduling

Resource Management Or
ch

es
tra

tio
n

Container Runtime Container Network Container Storage

Machine & OS

Machine infrastructure

Container Runtime Container Network Container Storage

Machine & OS

The CRI is a standardized interface between Kubernetes and the container runtime that is responsible for
starting and stopping containers. The CRI abstracts away the details of the container runtime, allowing
Kubernetes to work with any container runtime that implements the CRI interface. This makes it possible to use
different container runtimes on different nodes in the same cluster, or to switch to a different container runtime
without having to modify your applications or infrastructure

The CNI is a standard for configuring network interfaces for Linux containers. Kubernetes uses a CNI plugin to
configure the network interfaces for the containers running on your cluster. The CNI plugin is responsible for
setting up the network namespace for the container, configuring the IP address and routing, and setting up any
necessary network policies or security rules. By using a CNI plugin, Kubernetes makes it easy to switch between
different networking solutions or to use multiple networking solutions in the same cluster

The CSI is a standard for exposing storage systems to container orchestrators like Kubernetes. Kubernetes uses a CSI driver to interact with the underlying storage system. The CSI driver is
responsible for managing the lifecycle of the storage volumes used by your applications, including creating, deleting, and resizing volumes. By using a CSI driver, Kubernetes makes it easy to
use a wide range of storage systems with your applications, including cloud-based storage solutions, on-premises storage systems, and specialized storage solutions for specific use cases

you create YAML manifests that describe the
Kubernetes objects that make up your application

Why you need Kubernetes and what it can do?
Simplify container management: Kubernetes provides a unified API for managing
containers, making it easier to deploy and manage containerized applications
across multiple hosts or cloud providers

Improve scalability: Kubernetes makes it easy to scale containerized applications up or
down based on demand, ensuring that applications can handle increased traffic or demand
without downtime or disruption

Enhance resiliency: Kubernetes provides built-in fault tolerance and self-healing
capabilities, which can help keep applications running even in the face of
hardware or software failures

Increase automation: Kubernetes automates many of the tasks involved in deploying and
managing containerized applications, such as rolling updates, scaling, and load balancing.
This can help reduce the burden on operations teams and improve efficiency

Simplify application deployment: Kubernetes provides a consistent way to deploy
and manage containerized applications across different environments, such as
on-premises data centers or public cloud providers

Provide flexibility: Kubernetes is highly configurable and extensible, allowing developers
and operations teams to customize it to meet their specific needs. This includes support
for different container runtimes, storage systems, and networking plugins

 4

026c0899de80acf5058d3c6add117633058460b7317d731d2e911bf70b9e5c25

Master Node(s): The master node is responsible for
managing the overall state and control of the cluster.

Worker Node(s): The worker nodes, also known as worker or minion nodes,
are responsible for executing the actual workloads and hosting the containers.

————————> ————————>

Kubernetes Cluster

Master Node Worker Node

Pvc

Depoyment

Depoyment Service

IngressSecret

ConfigMap StatfulSet

StorageClass

Service

ServiceAccount Pvc

Kube-api

SchedC-M

CRI

Etcd

Kubelet

Worker Node
CRIKubelet

Worker Node
CRIKubelet

Worker Node
CRIKubelet

Master Node

SchedC-MEtcd

Kube-api

Master Node

SchedC-MEtcd

Kube-api

Kubernetes cluster

The kube-apiserver is the control plane component that serves as the primary management
entity for the cluster. It handles all communication and authentication, and controls all other
components of the cluster. Additionally, the kube-apiserver is also responsible for monitoring
and controlling the state of the cluster, making sure that all components are running as
expected.

Etcd is a distributed key-value database that is used by Kubernetes to store cluster state
data. It is responsible for maintaining the configuration details of the Kubernetes cluster and
is the only component that interacts directly with the kube-apiserver. etcd provides a reliable
and highly available data store for Kubernetes, ensuring that the cluster can recover quickly
from failures and maintain consistency across all nodes.

The kube-control-manager is a collection of controllers that manage various aspects of the
Kubernetes cluster. These controllers include the node controller, which watches the state of
nodes in the cluster and takes actions to ensure that nodes are stable and healthy. For example,
if a node fails, the node controller will take actions to ensure that the workloads running on
the failed node are rescheduled onto other nodes in the cluster. Other controllers in the kube-
control-manager include the replication controller, endpoint controller, and service account
and token controllers, which manage other aspects of the cluster such as scaling, networking,
and security

The kube-scheduler is responsible for assigning newly created pods to nodes in the cluster. It
reads the list of unassigned pods from etcd and, using a variety of algorithms and configurations,
determines which node each pod should run on. Once it has made its decision, the kube-scheduler
informs the kube-apiserver, which in turn communicates with the kubelet on the chosen node to
start the pod's containers and begin running the workload.

The kubelet is the primary node agent that runs on each worker node in the Kubernetes
cluster. It is responsible for managing and monitoring the state of containers running on
the node, as well as ensuring that the containers are healthy and running as expected.
The kubelet communicates with the kube-apiserver to receive instructions on which pods
to run on the node, and reports back to the master node with updates on the status of the
containers and their health. Additionally, the kubelet also manages the networking and
storage configurations for the containers running on the node

Linux

Linux

Worker Node

Maintains network rules on nodes
Manage containers on node

>

> >

>>

Run Kubernetes controllers
Decides witch node should
be used for each Pod

Key-value database used as backing
store for all cluster configuration data

Allows interacting
with the control plane

Master

The cluster control plane

>

Kube-controller-manager Kube-scheduler

Etcd Kube-apiserver

Kubernetes is built on a master-worker architecture. The master node is responsible for managing the overall state of the cluster, while the worker nodes
run the actual application workloads. The components of the Kubernetes master node include the API server, etcd, scheduler, and controller manager.
The worker nodes run the kubelet, kube-proxy, and the container runtime

Run containers on node

>

The container runtime is responsible for running containers on each node in the cluster. The
container runtime is a software component that manages the lifecycle of containers, including
pulling container images from a registry, creating and starting containers, monitoring their
health, and stopping or deleting them when they are no longer needed.

Worker Node

>

Kubernetes components can be run in a Kubernetes cluster as containers or system-level services, depending on their requirements and the needs of the cluster.
In general, Kubernetes components that require access to system resources or need to run on the node itself (such as the kubelet and kube-proxy) are run as system-level
services on each node. Components that do not require direct access to system resogurces and can be run in a container (such as the API server, etcd, kube-scheduler, and
kube-controller-manager) are typically deployed as containers in pods

 Kubernetes Architecture:
 5

The Kube-proxy is responsible for managing the networking and routing configurations
for services within the cluster. In Kubernetes, a service functions as an abstraction layer
that facilitates communication between pods in the cluster. When a service is established,
Kubernetes generates a set of iptables rules on each node within the cluster. Managed by
kube-proxy, these rules enable traffic to be accurately directed to the appropriate pods
associated with the service, irrespective of the node they operate on. This ensures that
communication between the pods and services is both reliable and efficient.

 Methods of building a Kubernetes cluster:

There are several ways to build a k8s cluster, depending on your requirements and the resources you have available. Here are some common approaches:

 How to connect to a Kubernetes cluster
To connect to a Kubernetes cluster, you usually use kubectl. kubectl is a powerful and flexible command-line tool for managing Kubernetes clusters, providing a
simple and consistent interface for interacting with Kubernetes resources and performing operations on the cluster

When a user runs a kubectl command, kubectl sends an HTTP request to the Kubernetes API server using the API endpoint specified in the kubectl configuration
file. The API server then processes the request, performs the requested operation, and returns a response to kubectl.

The API server uses authentication and authorization mechanisms to ensure that only authorized users can access and modify resources in the cluster.
By default, kubectl uses the credentials and configuration information stored in the .kube/config file to authenticate and authorize requests to the API server

K8s uses a configuration file called "kubeconfig" to store information about how to connect
to a Kubernetes cluster. This file contains information about clusters, users, and contexts

 sudo kubectl --kubeconfig /etc/kubernetes/admin.conf get node

mkdir -p $HOME/.kube
sudo scp user@cluster-ip/etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

apiVersion: v1
kind: Config

clusters:
- name: k8s-st1
 cluster:
 certificate-authority-data: <certificate data>
 server: https://127.0.0.1:41285

users:
- name: arye
 user:
 client-certificate-data: <certificate data>
 client-key-data: <key data>

contexts:
- name: arye@k8s-st1
 context:
 cluster: k8s-st1
 user: arye
 namespace: dev

current-context: arye@k8s-st1

An example kubeconfig file

provides information about a Kubernetes cluster. Each cluster configuration
includes the cluster name, server URL, and any necessary authentication
information such as a certificate authority

provides information about a user that can authenticate to a k8s cluster.
Each user configuration includes the user name and any necessary
authentication information such as a client certificate and key

specifies a cluster and a user to use when connecting to a k8s cluster. Each
context configuration also includes an optional namespace that specifies the
default namespace to use when executing commands against the cluster

This field specifies the default context to use when executing "kubectl" commands

kubectl config view
used to display the current kubeconfig file. It shows all
of the clusters, users, and contexts defined in the file

kubectx
a third-party utility that can be used to switch
between contexts defined in the kubeconfig file

Having access to the cluster configuration file can potentially allow an attacker to view, modify, or delete resources in the cluster, as well as perform other
malicious actions. Therefore, it is important to ensure that access to the cluster configuration file is tightly controlled and restricted to only those who need it

If a configuration file is not present in the ~/.kube directory, we must pass it each
time we run a command. To avoid this inconvenience, we can follow these steps

kubectl completion zsh > ~/.oh-my-zsh/custom/plugins/kubectl.plugin.zsh

…
plugins=(
 git
 kubectl
)

You can use autocompletion for kubectl in zsh and bash
This script provides auto-completion support for kubectl commands and flags when using the zsh shell with the Oh My Zsh framework

Once the script is generated and saved in the appropriate directory, you can
enable it by adding kubectl to the plugins array in your ~/.zshrc config file

kubectl completion bash > /etc/bash_completion.d/kubectl

To generate a shell completion script for the bash shell, you can use the following command

 6

Self-hosted Kubernetes cluster: In this approach, you set up and manage your own Kubernetes cluster on your infrastructure. This requires expertise in Kubernetes and
infrastructure management, but gives you full control over the environment. You can use tools like kubeadm, kops, Rancher, kubespray to set up and manage the cluster.
This approach can be a good fit if you have specific security or compliance requirements, or if you need to customize the environment to your needs.

Cloud-hosted Kubernetes cluster: Most cloud providers offer managed Kubernetes services, such as Amazon EKS, Google Kubernetes Engine (GKE), or Microsoft Azure
Kubernetes Service (AKS). With this approach, the cloud provider manages the underlying infrastructure and Kubernetes control plane, while you manage the worker nodes
that run your applications. This approach can be more cost-effective and reduces the operational overhead of managing your own infrastructure. It's a good fit if you're
already using a cloud provider and want to leverage their managed Kubernetes service.

Cluster as a Service: Cluster as a Service (CaaS) is a cloud-based service that lets you create and manage Kubernetes clusters without worrying about the underlying
infrastructure. Providers like DigitalOcean, Linode, and Platform9 offer CaaS solutions that simplify the process of creating and managing Kubernetes clusters. With this
approach, you get the benefits of managed Kubernetes services without being tied to a specific cloud provider.

Containerized Kubernetes: You can run k8s as a containerized application on your infrastructure or in the cloud. This approach is useful for development and testing
environments, as it lets you spin up a Kubernetes cluster quickly and easily. You can use tools like Minikube, or KinD to create containerized Kubernetes clusters.

In summary, there are several ways to build a k8s cluster, each with its own benefits and trade-offs. The approach you choose will depend on your specific needs and constraints.

K8s Cluster

————————————>
POST requests
REST API Call

Master Node

Kube-api Worker Node

Worker Node

>Kubectl

kubeconfig

Pods are the smallest deployable units of computing that you can create and manage in Kubernetes.A Pod is a group of
one or more containers, with shared storage and network resources, and a specification for how to run the containers

k get pods -o wide -w
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nginx 1/1 Running. 0 7m53s 10.244.83.193 kubeworker-1 <none> <none>

To check the status of a pod , you can use the kubectl describe pod command and check the Events section. This
section shows a list of events related to the pod, including the time of occurrence, type of event, and a description
of the event. This information can be useful for monitoring and troubleshooting issues with the pod
arye@arye-dev : kubectl describe pods pod-nginx

…
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 8m4s default-scheduler Successfully assigned default/pod-nginx to kubeworker-1
 Warning Failed 8m1s kubelet Error: ErrImagePull
 Normal BackOff 8m1s kubelet Back-off pulling image "nginx:1.18"
 Warning Failed 8m1s kubelet Error: ImagePullBackOff
 Normal Pulling 7m46s (x2 over 8m3s) kubelet Pulling image "nginx:1.18"
 Normal Pulled 3m58s kubelet Successfully pulled image "nginx:1.18"
 Normal Created 3m58s kubelet Created container nginx-container
 Normal Started 3m57s kubelet Started container nginx-container

In Kubernetes, if you update a YAML file and want to apply the changes to a running
pod, only a few fields can be updated, and you cannot update all fields in the YAML file.
If you make changes that affect fields outside the scope of updateable fields, you must
delete the pod and then apply the new YAML file to create a new pod

 Process of creating a pod in Kubernetes:

Kubernetes
objects

ReplicaSets

Pod

Deployments

StatefulSets

Se
rvi

ce
s

Ing
res

se
s

DaemonSets

ResourceQuotas
LimitRanges

HorizontalPodAutoscalers

NetworkPolicies

Secrets
ConfigMaps

PersistentVolumeClaims

Jobs
CronJobs

PersistentVolumes

Role

RoleBinding

StorageClass

Clus
ter

Role
Bind

ing

ClusterRole

. . .

Kubernetes objects

Pods encapsulate and manage application processes and are created using a pod specification, which describes the desired state of the
pod, including the containers to run, the network configuration, and any storage volumes to use. Pods are scheduled to run on nodes in the
cluster by the Kubernetes scheduler and can be managed using labels and selectors to group and organize them based on their attributes

To run a container, it must be part of a pod. This means that containers
cannot be directly brought up in the cluster without being part of a pod

Pod
Container

When creating a pod , you can specify various settings for the pod and the
containers running in it. Here's an example YAML manifest that creates a pod

apiVersion: v1
kind: Pod
metadata:
 name: pod-nginx
 namespace: default
 labels:
 app: nginx
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx:1.18

pod-def.yml

kubectl explain pods
Kubectl explain pods.spec.containers

 kubectl delete -f pod-df.yml

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/#pod-v1-core

kubectl explain command provides detailed information about Kubernetes API resources. It
allows you to view the structure, properties, and possible values of any Kubernetes resource

specifies which version of the Kubernetes API is
used to create and manage the resource

specifies the type of Kubernetes resource

This field contains metadata about the pod, such as
its name, namespace,labels, annotations,.. .

The spec field contains the specification for the pod, including
the containers to run, the network configuration, and any
storage volumes to use,…

The kubectl create -f command is used to create a Kubernetes resource from a YAML file kubectl create -f pod-df.yml

this command is used to delete a k8s resource that was created using a YAML file

k is a alias for
the kubectl

>Kubectl

 kubectl apply -f pod-df.yml

—————————>

apiVersion: v1
kind: Pod
metadata:
 name: pod-nginx
 namespace: default
 labels:
 app: nginx
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx:1.18

Request to create a pod is sent to Kubernetes0

kube-api authenticates the request
kube-api checks authorizations 1

————————————————————————>

kube-api checks the manifest file associated
with the pod for syntax errors

2

3 kube-api writes the pod's manifest file to etcd
NAME READY STATUS RESTARTS AGE IP NODE
pod-nginx 0/1 Creating 0 1m - -

K
ge

t p
od

——————————————————————>
<——————————————————————

scheduler continuously monitors etcd

The scheduler finds a new unassigned pod on etcd and
attempts to schedule it to run on an available node4

<——

—
—

—
—

—
—

—

The scheduler selects a node to assign the pod to it
The scheduler reports the selected node to the kube-api5

—————————————————————————————

<—
—

—
—

—
—

—
—

—

Kube-api updates etcd with changes pod’s status filed
NAME READY STATUS RESTARTS AGE IP NODE
pod-nginx 0/1 Pending 0 1m - kubeworker-1

5

——————————————————————————————>
<——————————————————————————————

Kube-api sends a pod creation request to kubelet6

Kubelet pulls the container images and starting the containers, updated pod status
arye@arye-dev : kubectl describe pods pod-nginx
…
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 1m4s default-scheduler Successfully assigned default/pod-nginx to kubeworker-1
 Normal Pulling 1m46s kubelet Pulling image "nginx:1.18"
 Normal Pulled 1m58s kubelet Successfully pulled image "nginx:1.18"
 Normal Created 2m kubelet Created container nginx-container
 Normal Started 2m kubelet Started container nginx-containerkube-api reads pod information from kubelet and updates the pod status in etcd

6

7
—————————————————————————————

<—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

NAME READY STATUS RESTARTS AGE IP NODE
pod-nginx 1/1 Running 0 7h17m 10.244.83.193 kubeworker-1 7

K
u
b
e
-
a
p
i ———-———————-

———-———————-

—
—

—
—

—
—

-

—
—

—
—

—
—

- kubeworker-1

 7

 Authentication and Authorization: When a request to create a pod is sent to Kubernetes through kubectl or the Kubernetes API, the kube-api module first authenticates the request
and then checks for the necessary permissions or authorizations to create the pod.

 Manifest Syntax Check: If the authentication and authorization processes are successful, kube-api checks the manifest file associated with the pod for syntax errors. This ensures
that the manifest file is well-formed and adheres to the Kubernetes API schema.

 Writing to etcd: If the syntax check is successful, kube-api writes the pod's manifest file to etcd

 Pod Scheduling: The scheduler is responsible for assigning pods to nodes in the cluster based on resource availability and other factors. The scheduler continuously monitors the
cluster for new pods and nodes and attempts to schedule the pods to run on the available nodes.

 Reporting to API: The scheduler requests unassigned pods from the Kubernetes API and selects a node to assign the pod to. The scheduler then reports the selected node back to
the API, which updates etcd with this information.

 Sending Creation Request to Kubelet: Once the API updates etcd with the selected node information, it sends a creation request to kubelet, the agent running on each node
responsible for running the pod. Kubelet then starts the process of creating the pod on the selected node, pulling the necessary container images and starting the containers.

 Pod Status Update: As the pod is being created, kubelet updates the pod status in etcd to reflect the current state of the pod. This includes information such as the pod's phase,
container statuses, and IP address.

 Define Pod specification : This involves creating a pod manifest yaml file that defines the pod properties like name, labels, containers, volumes etc. 0

1

2

3

4

5

6

7

The assignment of IP address to Pod is handled by the CNI

 If a pod is deleted, the system does not automatically recreate it because there is no pod controller in `kube-control-manager`. Therefore, even if you have only one pod, it is better
 to place it as a subset of a new object called a ReplicaSets that it can be managed by the replication controller. This tool can automatically perform load balancing and scaling.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: replicaset-nginx
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17
 replicas: 3
 selector:
 matchLabels:
 app: nginx

Groups

kubectl apply -f rs-def.yml
kubectl describe rs replicaset-nginx

K get rs
NAME DESIRED CURRENT READY AGE
replicaset-nginx 3 3 3 13s

K get pod
NAME READY STATUS RESTARTS AGE IP NODE
pod-nginx 1/1 Running 0 7h17m 10.244.83.193 kubeworker-1
replicaset-nginx-bnrcs 1/1 Running 0 23s 10.244.83.195 kubeworker-1
replicaset-nginx-hm26d 1/1 Running 0 23s 10.244.83.194 kubeworker-1

This section is the same as defining a pod,
and if a pod is deleted, it can be recreated
based on this template

The pods that are subsets of this ReplicaSet
must have a label with app: nginx

The selector section of the ReplicaSet definition specifies that the pods managed by this ReplicaSet should have a label
with key app and value nginx. Since there is already a pod running with the label app: nginx, the ReplicaSet will select it
as part of its subset and will only create the remaining two replicas to meet the desired number of 3 replicas.

It is recommended to use kubectl apply instead of kubectl create

kubectl scale replicaset=3 rs.def.yml —replicas=6

rs-def.yml

you can scale the number of replicas of a ReplicaSet using the kubectl scale command, or by updating
the replicas field in the ReplicaSet manifest and applying the changes using kubectl apply

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 namespace: dev
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17
 strategy:
 type: RollingUpdate
 replicas: 3
 selector:
 matchLabels:
 app: nginx

ReplicaSet

replica: 3

selector:

 app: nginx

Pod

 Labels:

 app: nginx

Container

Pod

 Labels:

 app: nginx

Container

Pod

 Labels:

 app: nginx

Container

—————————————————

——————————————————
—
—
—
—
—

—
—
—
—
—
—

Node 1

—
—
—
—
—
—

—
—
—
—
—
—

————————

————————

Node 2

ReplicaSet is a k8s object that ensures a specified number of replica Pods are running at all times. If a Pod
managed by a ReplicaSet fails or is deleted, the ReplicaSet will automatically create a new replica to replace it

Master-node

——————————————

——————————————

—
—
—
—
—
—

—
—
—
—
—
—

ReplicaSet is designed to ensure that the current state of the cluster matches the
desired state specified in its definition. The desired state is defined by the number
of replicas of a specific Pod template that should be running at any given time

The ReplicaSet controller continuously monitors the state of the cluster and compares it to the
desired state specified in the ReplicaSet definition. If there are fewer replicas than the desired
number, the controller will create new replicas to bring the cluster back to the desired state. If
there are more replicas than the desired number, the controller will delete the excess replicas

rep
lic

at
ion

 co
ntr

oll
er

Deployment

ReplicaSet
Pod Pod Pod

Updates & Rollback

Self-healing, scalable, desired state

Container Container Container..

Deployment is a powerful higher-level abstraction that enables you to manage the desired state of your application in Kubernetes. It ensures that a specified number of
replicas of your application are always running, by creating and managing other Kubernetes resources like ReplicaSets and Pods. With deployments, you can perform
rolling updates and rollbacks, making it easy to update your application without any downtime or quickly revert to a previous version in case of issues.

A Deployment definition is similar to a ReplicaSet definition in that both are used to manage a set of
replicas of a pod template. However, the main difference is that a Deployment provides additional
functionality for rolling updates and rollbacks of the replicas, whereas a ReplicaSet does not

recommended to use a Deployment to manage the replicas of a stateless application

Horizontal Pod Autoscaler
Scales the number of Pods
based on various metrics

Deployment
Creates a ReplicaSet and takes

care of rollouts and rollbacks

CronJob
Creates Jobs based on a time

schedule

Replicaset
Creates the desired amount of

Pod instances

Job
Creates short living Pods for

one time executions

StatefulSet
Creates Pods while handling the

needs of stateful applications

DaemonSet
Creates exactly one Pod per

Node

Pod
Smallest k8s compute resources

containing 1..n containers

>

>

>>>

>

<>

Kubernetes workload objects

 Workloads
Workload object is a resource that defines how to run a containerized application or a set of containerized applications in a cluster. Workload objects are used to manage the
deployment, scaling, and management of containerized applications within a Kubernetes cluster.
The most basic workload object in Kubernetes is the Pod, which represents a single instance of a running container. However, managing Pods directly can be complex and
error-prone, which is why Kubernetes provides higher-level workload objects that abstract away the details of Pod management.

workload objects in Kubernetes provide a declarative and automated way of managing containerized applications in a cluster. By defining the desired state of your application
using workload objects, Kubernetes can handle the details of creating, scaling, and updating the underlying pods that run your application

 8

In Kubernetes, Namespace is a way to organize and isolate resources within a cluster. A namespace provides a virtual cluster within a physical cluster, allowing multiple teams or
applications to coexist within the same Kubernetes cluster

Each namespace has its own set of resources, such as pods, services, storage volumes that are
isolated from resources in other namespaces. This helps to prevent naming conflicts between
resources and allows different teams or applications to manage their own resources independently

kubectl create namespace dev

apiVersion: v1
kind: Namespace
metadata:
 name:dev

— - ————————— —- —— —- —- ———-—- ———-—— —- —- ———-—- ———-—- ———-—— —- —- ———-— - ————————— —- —— —- —————-

To create a namespace , you can use the kubectl
create namespace command

you can also create a YAML file that defines your namespace
and use the kubectl apply command to create the namespace

App1 App1

App2 App2Fr
on

ted
 na

me
sp

ac
e

De
v n

am
es

pa
ce

.

Node1

.

Node2

Resource Requirements & Limits apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 namespace: dev
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17
 resources:
 requests:
 cpu: “100m”
 memory: “10M”
 limits:
 cpu: “200m”
 memory: “50M”
 replicas: 3
 selector:
 matchLabels:
 app: nginx

Resource requirements and limits are used to specify the amount of CPU and memory resources that a container requires in order to run properly

Resource requirements are set in the pod specification and indicate the minimum amount of CPU and memory resources that a container
needs to run. Kubernetes uses these requirements to determine which nodes in the cluster have the necessary resources to schedule the pod

Resource limits specify the maximum amount of CPU and memory resources that a container is allowed to use. Kubernetes enforces
these limits by throttling the container's resource usage if it exceeds the specified limit

Setting resource requirements and limits is important for ensuring that containers have the necessary
resources to run effectively without overloading the system. By specifying resource limits, you can

prevent containers from using too many resources and causing performance issues or crashes

 Container requires at least 100 milliCPU (0.1 CPU)
and 10 megabytes of memory to run

Container is limited to using no more than 200
milliCPU (0.2 CPU) and 50 megabytes of memory

The Capacity section shows the maximum amount of
resources (such as CPU and memory) that a node in the
Kubernetes cluster has available
Allocatable section, shows the amount of resources
that Kubernetes has allocated for use by containers
and pods on the node

…
Capacity:
 cpu: 4
 memory: 8192Mi
 pods: 110
Allocatable:
 cpu: 3
 memory: 7168Mi
 pods: 110
…

kunectl describe node kubeworker-1 ==>

if you do not specify the request and limits values for
a container , the pod will be assigned default values
for CPU and memory. The default request value is
0.5 CPU and 256Mi memory, while the default

limits value is 1 CPU and 256Mi memory

———————————-————————-————————-————————-—————-————————-————————-—————-—————-————————-—

apiVersion: v1
kind: ResourceQuota
metadata:
 name: saas-team-quota
 namespace: dev
spec:
 hard:
 pods: "10"
 requests.cpu: "2"
 requests.memory: 2Gi
 limits.cpu: "4"
 limits.memory: 4Gi
 configmaps: "5"
 persistentvolumeclaims: "5"
 replicationcontrollers: "5"
 secrets: "5"
 services: "5"
 services.loadbalancers: "2"
 services.nodeports: "3"
 count/deployment.apps: "4"

The total amount of CPU that can be requested by all pods in the namespace
The total amount of memory that can be requested by all pods in the namespace

The total amount of CPU that can be used by all pods in the namespace
The total amount of memory that can be used by all pods in the namespace

Resource quotas in k8s are a way to limit the amount of compute resources that can be consumed by a set of pods in a namespace. A resource quota is defined as
a Kubernetes object that specifies the maximum amount of CPU, memory, and other resources that can be used by pods in a namespace

Resource quotas

The maximum number of pods that can be created in the namespace
ResourceQuota object specifies the maximum limits for the following resources

Name: saas-team-quota
Namespace: dev
Resource Used Hard
-------- ---- ----
configmaps 0 5
limits.cpu 1 4
limits.memory 2 4Gi
persistentvolumeclaims 0 5
pods 5 10
requests.cpu 1 2
requests.memory 2 2Gi
secrets 0 5
services 1 5
services.loadbalancers 0 2
services.nodeports 0 3
count/deployment.apps 1 4

This command will display detailed information about
the saas-team-quota ResourceQuota object, including
the current usage and maximum limits for each resource

kubectl describe resourcequota saas-team-quota =>

apiVersion: v1
kind: LimitRange
metadata:
 name: dev-resource-limits
 namespace: dev
spec:
 limits:
 - default:
 cpu: 100m
 memory: 128Mi
 defaultRequest:
 cpu: 50m
 memory: 64Mi
 max:
 cpu: 500m
 memory: 512Mi
 min:
 cpu: 50m
 memory: 32Mi
 type: Container

 LimitRange is a resource object that is used to specify default and maximum resource limits for a set of pods in a namespace
LimitRange

When a LimitRange is applied to a namespace, it will only affect newly created pods. Existing pods will not
have their resource limits automatically updated to match the LimitRange settings

LimitRange is used to set default and maximum resource limits for individual pods or containers within
a namespace, while ResourceQuota is used to set hard limits on the total amount of resources that can
be used by all the pods in a namespace

$ k describe ns dev
Name: dev
Labels: <none>
Annotations: <none>
Status: Active
Resource Quotas
 Name: comput-quota
 Resource Used Hard
 -------- --- ---
 count/deployments.apps 1 2
 cpu 6m 100m
 memory 60M 100M
 pods 6 10
No LimitRange resource.

If a ResourceQuota is applied to a namespace but no resource constraints are defined for the pods in the template section of a Deployment YAML file, then the Deployment
and ReplicaSet will still be created. However, no pods will enter the running state, as the ResourceQuota will prevent them from consuming any resources k -n dev get events

.
 cpu limit =200 cpu request = 100

Guaranteed cpu resources for container
Maximum CPU resources for container

Area in between which k8s can throttle depending on other containers

>><<

><

 9

When a container reaches or exceeds its memory limit, the Linux kernel's Out of Memory Killer (OOM Killer) is invoked. The OOM
Killer is responsible for selecting and terminating processes to free up memory when system memory becomes critically low. By
default, Kubernetes lets the OOM Killer select and terminate the process within the container that triggered the OOM condition.

1

2

3

4

Namespaces provide a way to organize resources and apply resource quotas, network policies, and other settings at a namespace level. For example,
you can limit the number of pods or services that can be created in a namespace, or restrict network traffic between pods in different namespaces.

 Namespace

&

E

&
T

[

[

[

2

T

1

—

 Service
Services are a core component in Kubernetes that are used to manage networking and traffic flow within a cluster. They provide a stable IP address and DNS name for a set of pods
and allow for communication between different components within and outside of the application. Services also enable load balancing , service discovery and traffic management,
making them a critical component for building scalable and resilient applications in Kubernetes.

If a pod fails or is removed from the service, controller will automatically remove it from the
list of endpoints for the service. This ensures that traffic is not sent to a non-existent pod.

When a service is created, it is assigned a virtual IP address (known as a ClusterIP), which is used to route traffic to the pods that are part
of the service. The service also has a DNS name, which can be used to access the service from within the cluster

10.244.83.195 10.244.83.197

When a pod managed by a deployment fails,
 The controller creates a new pod to replace the failed pod

Once the new pod is running and ready, service's endpoint
controller will add it back to the list of endpoints for the
service, allowing traffic to be routed to it
(used labels and selectors to discovery)

>>

app: nginx

10.102.156.115

.. . .

—-————————-————————-—————-————————-————————-—————-—————-—————————||||

|
|

Service types in k8s

 10

1

2

3

.

.

—————

——————

— Deployment

Replicaset

Label>

>

>

>

———

—————Service

—
—

—
—

—

Selector
10.244.83.196

10.244.83.193

10.244.83.194

10.244.83.195
10.244.83.210

Each service has a unique IP address and DNS name that
can be used to access the pods that provide the service.

25%

25%

25%

25%

75%

services use labels and selectors to discover and
route traffic to the pods that are part of the service

10.102.156.115

app: apache

app: nginx

app: nginx

app: nginx

app: nginx

app: nginx

app: nginxapp: nginxFailed

ClusterIP
 This is the default type of service, which exposes
the service on a cluster-internal IP address that

is only accessible from within the cluster

NodePort
This type of service exposes the service on a static

port on each node in the cluster, which can be accessed
from outside the cluster using the node's IP address

LoadBalancer
This type of service exposes the service

using a cloud provider's load balancer, which
distributes traffic to the different Pods

ExternalName
This type of service maps the service to an external
DNS name, allowing the service to be accessed from

within the cluster using a consistent name

apiVersion: v1
kind: Service
metadata:
 name: nginx-internal
 namespace: dev
spec:
 type: ClusterIP
 ports:
 - targetPort: 80
 port: 80
 protocol: tcp
 selector:
 app: nginx

————————-————————-

targetPortport

Node nodePort

|
|
|
|
|
|

apiVersion: v1
kind: Service
metadata:
 name: nginx-ext
 namespace: dev
spec:
 type: NodePort
 ports:
 - targetPort: 8080
 port: 80
 nodePort:8080
 selector:
 app: nginx

.

.

The targetPort is used to specify the port number on
the Pods that the service should forward traffic to

The port is used to specify the port number
that clients should use to access the service

The nodePort field is used to specify the high port number on each node in
the cluster that can be used to access the service from outside the cluster

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

—————
—————

————

The selector field specifies the label selector that the service
will use to find the Pods that it should load balance traffic to

service will load balance traffic to any Pods that
have the label app=nginx

if you don't specify a nodePort value , Kubernetes will automatically
allocate a random high port number (30000-32767)for the service

apiVersion: v1
kind: Service
metadata:
 name: nginx-ext-lb
 namespace: dev
spec:
 type: LoadBalancer
 ports:
 - targetPort: 8080
 port: 8080
 nodePort:31090
 selector:
 app: nginx

LoadBalancer Service
 This method requires that your cloud provider
supports LoadBalancer services, and it can
incur additional costs

NodePort Service
This type of service exposes the service on a static port on
each node in the cluster, which can be accessed from outside
the cluster using the node's IP address

To expose a service to the outside world in k8s, you can use one of the following methods

Ingress
 An Ingress is a Kubernetes resource that defines a set of rules for routing external HTTP(S) traffic to a service.
Ingress resources require an Ingress controller to be deployed in the cluster, which is responsible for implementing
the routing rules. Ingress controllers are available for many popular web servers, such as Nginx, Traefik

Pod
Container

Pod
Container

Service
(ClusterIP)

Pod

Container

Container

Service
(ClusterIP)

3306
9104

Pod

Container

Container

3306
9104

———

———
—

—
—

—
—

—
—

—
-—

—
—

———

3306
9104

Prometheus

—
—

—

———
———

—
—

—
—

—
—

—
—

—

—-

—-

———-

—
—

—
—

—
—

—
—

—

—

—

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|———————————————-——————————-

————————-——————————-

<

<

>
>

>

>

>

>

—————————————-—————

—————————————-——————————-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|Node1 Node2

Cluster

Service
(LoadBalancer)

mysql-exporter

mysql-db

mysql-db

mysql-exporter

When you create a Service of type LoadBalancer, k8s will
automatically create a NodePort and ClusterIP for the Service.

Service
(ClusterIP)

mysql.connect(“Service Name.namespace.service.domain”)

apiVersion: v1
kind: Service
metadata:
 name: mysql-service
spec:
 selector:
 matchLabels:
 app: mysql
 ports:
 - name: mysql
 port: 3306
 targetPort: 3306
 - name: mysql-exporter
 port: 9104
 targetPort: 9104

app: mysql

app: mysql

.

NodePort

For services that we do not want to expose to the outside world
(such as database clusters like mysql), we set the service type to
ClusterIP. If we do not specify the service type, it will be selected
as ClusterIP by default

|
|

.

mysql.connect(host="mysql-service.dev.svc.cluster.local", port=3306,
database="mydb", user="<username>", password="<password>")

app: mysql
|
|
|Selector

|
|
|

Label

iptables -A KUBE-SERVICES -d 10.102.156.125/32 -p tcp -m comment --comment "/* dev/mysql: cluster IP" -m tcp --dport 3306 -j KUBE-SVC-ABC123

|
|
|
| When a service is created, the kube-proxy on each node in the cluster automatically creates iptables rules to forward traffic to the service endpoints.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR NODE-PORT ENDPOINTS
mysql-service ClusterIP 10.102.156.125 <none> 3306/TCP,9104/TCP 1d app=mysql <none> 10.244.83.210:3306, 10.244.83.211:3306

10.244.83.210

10.244.83.211

10.102.156.125

iptables

Service
(Headless)

Headless services are used for
direct access to pods Go to page 36

Ingress

iptables -A KUBE-SVC-<service-uid> -m comment --comment "dev/mysql-service:" -j KUBE-SEP-<endpoint-uid-1>
iptables -A KUBE-SVC-<service-uid> -m comment --comment "dev/mysql-service:" -j KUBE-SEP-<endpoint-uid-2>

.0

|
|
|
|
|

—————————————-——————————-—————————————-——-——

.0

While a load balancer service can provide a stable IP address and port for accessing the service, it still requires manual intervention
to update the endpoints, which can be time-consuming and error-prone. Therefore, a better solution to this problem would be to use
Kubernetes Ingress, which provides a more flexible and automated way of managing external access to the services in a k8s cluster

it is possible that a node might be added or removed from the system, which means that we need to manually update the endpoints of the
load balancer or recreate the service.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql-deployment
 namespace: dev
spec:
 replicas: 2
 selector:
 matchLabels:
 app: mysql
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - name: mysql
 image: mysql:latest
 ports:
 - containerPort: 3306
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: password
 - name: MYSQL_DATABASE
 value: mydb
 - name: mysql-exporter
 image: prom/mysqld-exporter:v0.12.1
 ports:
 - containerPort: 9104
 env:
 - name: DATA_SOURCE_NAME
 value: "root:$MYSQL_ROOT_PASSWORD@(localhost:3306)/
$MYSQL_DATABASE?tls=false"

In the real world, StatefulSets used instead of Deployments for stateful applications

When you create a LoadBalancer service , it creates a cloud provider-specific
LoadBalancer object, such as an Amazon Elastic Load Balancer (ELB) or
Google Cloud Load Balancer, which is external to the Kubernetes cluster

Go to page 36

Ingress
resources

Service
(NodePort)

—————

 Process of creating a service in Kubernetes:

apiVersion: v1
kind: Service
metadata:
 name: mysql-service
 namespace: dev
spec:
 type: ClusterIP
 ports:
 - targetPort: 80
 port: 80
 protocol: tcp
 selector:
 app: nginx

>Kubectl

 kubectl apply -f mysql-svc.yml

—————————>

Request to create a service is sent to Kubernetes1

Authentication and Authorization
Manifest Syntax Check

Kubelet interacts with kube-proxy to ensure that the iptables rules are properly configured and connected to the appropriate
pods. Kubelet provides kube-proxy with information about the pods that are running on the node, and kube-proxy uses this
information to update the iptables rules as needed.

kube-proxy on each node in the cluster automatically creates iptables rules to forward traffic to the service endpoints.
The following is a simplified overview of the iptables rules created by kube-proxy:
1. A new iptables chain is created with the name of the service (e.g. "my-service").
2. A rule is added to the PREROUTING chain to match incoming traffic that is destined for the service's cluster IP address (e.g. 10.0.0.1) and jump to the service chain.
3. In the service chain, a rule is added to select one of the service's endpoints using a load balancing algorithm (e.g. round-robin).
4. The selected endpoint's IP address is rewritten as the destination IP address of the packet.
5. The packet is then forwarded to the selected endpoint.

———-————————-————————-—————-————————-————————-—————-—————-————————-—————-————————-—————-

Writing to etcd: Kube-api creates an endpoint object
that tracks the IP addresses and ports of the pods

——————————————————>

|
|
|
|
|
|>

2-3

4

5

Allow traffic from the Kubernetes Service IP address and port to the Kubernetes Endpoints
iptables -A KUBE-SERVICES -d <ClusterIP>/32 -p tcp -m comment --comment "mysql-service/mysql: cluster IP" -m tcp --dport <Port> -j KUBE-MARK-MASQ
iptables -A KUBE-SERVICES -d <ClusterIP>/32 -p tcp -m comment --comment "mysql-service/mysql" -m tcp --dport <Port> -j KUBE-SVC-<service-uid>

Allow traffic from the Kubernetes Endpoints to the Pods
iptables -A KUBE-SEP-<endpoint-uid> -s <PodIP> -m comment --comment "mysql-service/mysql" -j KUBE-MARK-MASQ
iptables -A KUBE-SEP-<endpoint-uid> -s <PodIP> -m comment --comment "mysql-service/mysql" -j DNAT --to-destination <PodIP>:<Port>

iptables

Endpoint app: nginx

app: nginx

>

>

10.244.83.194

10.244.83.195

app: nginx

10.102.156.115

apiVersion: v1
kind: Endpoints
metadata:
 name: my-web-service
subsets:
 - addresses:
 - ip: 10.244.1.194
 - ip: 10.244.1.195
 ports:
 - name: http
 port: 80
 protocol: TCP

Endpoints are automatically created and managed by
Kubernetes when you create a Service, and they are updated
dynamically as Pods are added or removed from the Service

When a Service is created, the Service controller queries the Kubernetes API server to get a list of all Pods that match
the Service's label selector. It then creates an Endpoint object that includes the IP addresses and ports of these Pods,
and associates the Endpoint with the Service. The Kubernetes networking layer uses this Endpoint information to route
traffic to the appropriate Pods that make up the Service.

80

80

DNS

 11

Kubernetes has a built-in DNS component that provides naming and discovery between pods running on the cluster. It assigns DNS records (A records, SRV records, etc)
for each pod/service automatically. The DNS name follows a specific format, such as <service-name>.<namespace>.svc.cluster.local for accessing a Service or
 <pod-name>.<service-name>.<namespace>.svc.cluster.local for accessing a specific Pod associated with a headless Service.

The default DNS provider in Kubernetes is CoreDNS, which runs as pods/containers inside the cluster.
CoreDNS retrieves pod/service information from the Kubernetes API to update its DNS records.

dev

nginx-pod

Pod

nginx-service

Service

default

Pod

/etc/resolv.conf
nameserver 10.96.0.10

———————————>

|
|
|
|

1

2

10.244.0.5510.244.0.100

——

Pod dns policy
 Pod's DNS settings can be configured based on the dnsPolicy field in a Pod specification. This dnsPolicy field
accepts three possible values:

If a Pod located in the "default" namespace needs to communicate with a service named "nginx-service" residing
in the "dev" namespace, it can do so by using the URL "http://nginx-service.dev.svc.cluster.local".

Notice:Kubernetes does not automatically create DNS records for Pod names directly. This is because Pod IPs keep changing whenever Pods are recreated or
rescheduled.Instead, stable DNS records are maintained at the Service level in Kubernetes. Services have unchanging virtual IPs that act as stable endpoints Pods get DNS resolution indirectly via records in the Pod DNS subdomain:

Each Pod gets a DNS record in the format :
 <pod-ip-address>.<namespace>.pod.cluster.local

In Kubernetes, FQDN stands for Fully Qualified Domain Name. It is a complete domain name that
specifies the exact location of a resource within the DNS hierarchy. By using FQDNs, Kubernetes
simplifies the process of resource discovery, network routing, and namespace isolation within the cluster

 <pod-name>.<service-name>.<namespace>.svc.cluster.local

ClusterFirst: Any DNS query that does not match the configured search domains for the Pod are
forwarded to the upstream nameserver. This is the default policy if dnsPolicy is not specified.

Default: Use the DNS settings of the node that the Pod is running on. This means it will use the
same DNS as the node that the Pod runs on.

None: Allows a Pod to ignore DNS settings from the Kubernetes environment. All DNS settings
are supposed to be provided using the dnsConfig field in the Pod Spec.

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: myimage
 dnsPolicy: "None"
 dnsConfig:
 nameservers:
 - 1.2.3.4
 searches:
 - ns1.svc.cluster-domain.example
 - my.dns.search.suffix
 options:
 - name: ndots
 value: "2"

In this example, the Pod mypod uses a custom DNS resolver (1.2.3.4) and a custom search list
(ns1.svc.cluster-domain.example and my.dns.search.suffix). The option ndots:2 means that if a DNS query
name contains less than 3 dots, then the search list mechanism will be used. For example, a query for mypod
will be first tried as mypod.ns1.svc.cluster-domain.example and if that fails, as mypod.my.dns.search.suffix.

Please note that the Pod's DNS config allows
you to customize the DNS parameters of a Pod

 Define the service: The first step in creating a service is to define the service using a YAML file or through the Kubernetes API. The YAML file specifies details such as the name
of the service, the selector used to identify the pods that the service should route traffic to, and the type of service (ClusterIP, NodePort, or LoadBalancer).

 Submit the service definition: Once the service definition is created, it can be submitted to the Kubernetes API server

 API Server validates the service definition: The Kubernetes API server receives the service definition and validates it to ensure that it is well-formed and contains all the required
information.

 Service is created: Once the service is created, Kubernetes creates an endpoint object that tracks the IP addresses and ports of the pods that the service should route traffic to.
This information is stored in etcd

 iptables rules are created: Once the endpoint object is created, kube-proxy creates iptables rules on each node in the cluster to route traffic to the pods that are part of the service.
These iptables rules are used to ensure that traffic is routed to the correct pod, and that traffic is load balanced across multiple pods if more than one pod matches the selector.

 Access the service: The service is now accessible within the cluster using its name or DNS name, and can be used to route traffic to the pods that are part of the service.

 Monitor the service: Once the service is running, Kubernetes monitors its health and takes action if any issues arise. For example, if a pod fails, Kubernetes will automatically
remove it from the list of endpoints for the service.

1

2

3

4

5

6

7

Kube-system

Kube-dns

Service

Coredns

Pod

10.244.0.12:5310.96.0.10

——————>

nginx-service.dev.svc.cluster.local 10.244.0.100
10-244-0-100.dev.pod.cluster.local 10.244.0.55

CoreDNS will have the following DNS records for dev namespace

Hostname NS Type Root Ip Address
nginx-service dev svc cluster.local 10.244.0.100
10-244-0-55 dev Pod cluster.local 10.244.0.55

How scheduling works?
When a Pod is created , it is not assigned to any specific Node initially. instead, the Pod is marked as "unscheduled" and is added to a scheduling queue. The scheduler continuously
watches this queue and selects an appropriate Node for each unscheduled Pod.The scheduler uses a set of rules to determine which nodes are eligible for scheduling. These rules include:

Resource requirements:
The scheduler looks at the CPU and memory requirements

specified in the pod's configuration and ensures that the
selected node has enough available resources to run the pod.

Node capacity:
The scheduler considers the capacity of each node in the cluster, including

the amount of available CPU, memory, and storage, and selects a node
that has sufficient capacity to meet the pod's requirements

(Node,Pod) Affinity/anti-Affinity:
 Kubernetes allows users to specify affinity and anti-affinity rules that control which nodes pods can be scheduled on. For example, a pod may be required

to run on a node that has a specific label, or it may be prohibited from running on a node that already has a pod with a certain label.

Node selectors:
 Users can also specify node selectors, which are labels that are

applied to nodes in the cluster. The scheduler can use these
selectors to filter out nodes that don't match the pod's requirements.

Taints and tolerations:
 Nodes in a Kubernetes cluster can be tainted to indicate that they have specific

restrictions on the pods that can be scheduled on them. Pods can specify
tolerations for these taints, which allow them to be scheduled on the tainted nodes.

Kubernetes also provides the ability to filter nodes based on various
attributes before selecting them for scheduling. This allows users to
specify additional constraints, such as selecting only nodes with
specific labels or taints.

If the scheduler is unable to find a suitable node for the pod,
the pod remains unscheduled and enters a pending state until
a suitable node becomes available.

Once the scheduler has identified a set of eligible nodes, it evaluates each
node's fitness and assigns a score based on these factors. The node with
the highest score is selected, and the pod is scheduled to run on that node.

Labels & selector
labels are a powerful mechanism for grouping and organizing related objects, such as Pods, Services, Deployments, and more. Labels are key-value pairs that can be attached
to Kubernetes objects, and they can be used for a variety of purposes, such as grouping related objects for easy management, selecting objects for operations such as scaling
or updating, and enabling fine-grained access control

Grouping by object type: You can use labels to group objects based on their type, such as Pods, Services, Deployments, ConfigMaps
Grouping by application: You can use labels to group objects based on the application they belong to, such as a web application, a database, or a caching layer
Grouping by functionality: You can use labels to group objects based on their functionality, such as front-end components, back-end components, databases,
caches, authentication services, video processing services

there are several ways to use labels to group objects in Kubernetes

Annotations
Annotations are similar to labels, but they are designed to store additional information that is not used for grouping or selection, They can be used to store
information such as version numbers, timestamps, configuration details, and other metadata that is useful for debugging, monitoring, or other purposes

Annotations can be up to 256 kilobytes in size, allowing you to
store more complex metadata with Kubernetes objects (labels are
limited to 63 characters)

annotations:
nginx.ingress.kubernetes.io/proxy-cache: "on"
nginx.ingress.kubernetes.io/proxy-cache-path: "/data/nginx/cache"
nginx.ingress.kubernetes.io/proxy-cache-max-size: "100m"

you can use annotations to configure the Nginx ingress controller.
However, for more complex configurations, it can be easier to maintain
and manage your Nginx configuration by using a ConfigMap

 ->

 ->

 ->

———————————-————————-————————-————————-—————-————————-————————-—————-—————-————————-———

You can constrain a Pod to run on specific nodes or prefer to run on particular nodes. There are several recommended approaches to achieve this, including Node Selector,
Affinity/Anti-affinity, and Taint.

 12

Node selector
NodeSelector is a feature in Kubernetes that allows you to specify a set of labels that a node must have in order for a pod to be scheduled on that node. When you create a pod, you
can specify a NodeSelector in the pod spec that will be used to match against the labels of all the nodes in the cluster. If any node has labels that match the NodeSelector, then the pod
can be scheduled on that node. also for more complex and multiple constraints such as deploying a Pod on two nodes with different labels, it's better to use Affinity or Anti-Affinity

workernode-1

workernode-2

—————————————————————————— —
—

—

—
—

—

———————————————————
—

—
—

—

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
spec:
 containers:
 - name: dada-processor
 image: data-processor
 nodeSelector:
 disktype: ssddisktype: ssd

This pod will only be deployed on nodes that have this label

This command add the disktype=ssd label to the node named kubeworker-2

This command removes the disktype label from the node named
kubeworker-2

k label node kubeworker-2 disktype=ssd

k label node kubeworker-2 disktype-

If a pod's NodeSelector specifies labels that don't exist on any
node, the pod won't be scheduled until a node is labeled appropriately

!

———————————-————————-————————-————————-—————-————————-————————-—————-—————-————————-—

Pending…

Pod1

nodeName:Node1

Node1

Pod2
nodeSelector:
 app: kafka

Node2 app: Kafka

Pod3
affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: gpu
 operator: Exists

Node3 gpu: true

Pod5

affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: app
 operator: In
 values:
 - redis

Node4 Pod
Redis

app:redis
TaintNode5

kunectl taint nodes node5 app=ssd:NoSchedule

Node6

kunectl taint nodes node5 gpu=RTX4090:NoSchedule

Taint

gpu: rtx4090

Pod7

tolerations:
 - key: “app”
 operator: “Equal”
 value: “ssd”
 effect: “NoSchedule”

Pod8

affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: gpu
 operator: In
 values:
 - rtx4090

tolerations:
 - key: “gpu”
 operator: “Equal”
 value: “RTX4090”
 effect: “NoSchedule”

you can manually set the nodeName field in
the Pod's spec, and essentially bypassing the
scheduler and telling k8s exactly which Node

to schedule the Pod on.

Pod2 will only be deployed on
nodes that have app:kafka label

pod3 should be scheduled on a node
that has a GPU by using the gpu label

pod5 should be scheduled on a node that already
has at least one other pod with the label app=redis

Pod8 with a toleration and a node affinity can only be scheduled on
a node that meets both the toleration and affinity requirements

Pod7 with a toleration for a taint can be scheduled on a node that has the
matching taint, as well as on any other node that doesn't have the taint

Pod affinity is used to ensure that a pod is scheduled on a node that has other pods running with
certain characteristics, while node affinity refers to the preference of a pod to be scheduled on a
specific node based on its labels

taints allow to mark a node as unsuitable for certain pods,
preventing them from being scheduled on that node unless
they have a matching toleration

tolerations, affinity, and node selectors are defined on
pods, while Labels and taints are defined on nodes

 Affinity and anti-affinity

Affinity Type
—————————

Node Affinity
————————————

Pod Affinity
————————————

Pod Anti-Affinity

 Description
———

Used to specify rules for which nodes a Pod can be scheduled on based on the labels of the nodes.
——

Used to specify rules for which Pods should be co-located on the same node based on the labels of other Pods running on the node.
——

Used to specify rules for which Pods should not be co-located on the same node based on the labels of other Pods running on the node.

Affinity Caregory
————————————————

Required During Scheduling
—————————————————————

Preferred During Scheduling

 Description
——

Specifies that the rule must be satisfied for the Pod to be scheduled. If the rule is not satisfied, the Pod will not be scheduled.
——

Specifies that the rule should be satisfied for the Pod to be scheduled, but is not required. If the rule is not satisfied, the Pod will still be scheduled.

Each type of Affinity can be further
broken down into two categories

>

————————————-————————-————————-————————-—————-————————-————————-—————-—————-————————-—

Affinity gives you more control over the scheduling process, allowing you to set rules based on the node's labels or pod’s labels. Anti-affinity prevents Pods from
being scheduled on the same node or group of nodes.

apiVersion: v1
kind: Pod
metadata:
 name: database-pod
spec:
 containers:
 - name: database-pod
 image: postgres: 13.11
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 80
 preference:
 matchExpressions:
 - key: avail-zone
 operator: In
 values:
 - zone1
 - weight: 20
 preference:
 matchExpressions:
 - key: share
 operator: In
 values:
 - dedicated

apiVersion: v1
kind: Pod
metadata:
 name: frontend-pod
spec:
 containers:
 - name: frontend-container
 image: frontend-image
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - backend
 topologyKey: "rack"

 Taints & Tolerations

Taints are defined using the kubectl taint command, and they consist of a key-value pair and an effect. The key-value pair is used to
identify the type of taint

kubectl taint nodes node-name key(=value):taint-effect

>

NoSchedule: This effect means that no new Pods will be scheduled on the Node unless they have a corresponding toleration. Existing Pods on the Node will continue to run

PreferNoSchedule: This effect is similar to NoSchedule, but it allows Pods to be scheduled on the Node if there are no other Nodes available that match the Pod's scheduling
requirements. However, if there are other Nodes available that do not have the taint, the Pod will be scheduled on one of those Nodes instead.

NoExecute: This effect means that any Pods that do not have a corresponding toleration will be evicted from the Node. This can be useful for situations where a Node needs
to be drained of its Pods for maintenance or other reasons

Taint-effect

workernode-3

workernode-2

apiVersion: v1
kind: Pod
metadata:
 name: nginx-pod
spec:
 containers:
 - name: nginx-container
 image: nginx:1.18

————————-————————-————————-—-——————————————-
db-pod can still be scheduled on other nodes that do not have that taint

————————-————————-————————-
|
|
|

|
|
|

|
|
|

|
|

|
|

workernode-1

|

Pods that have this toleration can
be scheduled on workernode-3

nginx-pod does not tolerate the taint on the
workernode-3 , so it will not be deployed on it

kunectl taint nodes workernode-3 app=ssd:NoSchedule

We apply a taint on workernode-3

When you want to deploy a Pod on a specific node, you need to use taint affinity in addition to taints. This is because taints only restrict which nodes a
Pod can be scheduled on based on the characteristics of the node, but do not take into account any preferences or constraints specific to the Pod itself

apiVersion: v1
kind: Pod
metadata:
 name: db-pod
spec:
 containers:
 - name: mysql-container
 image: mysql:latest
 tolerations:
 - key: “app”
 operator: “Equal”
 value: “ssd”
 effect: “NoSchedule”

app=ssd:NoSchedule

 13

Taints are node-specific &
applied to individual nodes

Node affinity is a property of pods that can either prefer or require certain nodes for scheduling. In contrast, taints allow nodes to reject certain pods. Tolerations are applied to
pods and enable the scheduler to schedule them on nodes that have the corresponding taints

Node

Taint A

Pod

Pod —————————>

———————>X

Tolerations are applied to pods. Tolerations allow
the scheduler to schedule pods with matching taints

>

>

we used preferred Node Affinity to specify that the Pod prefers to be scheduled on nodes with the labels avail-zone: zone1 and share: dedicated. We
also assigned a weight to each label to indicate the preference of the Pod. The higher the weight, the higher the priority of the label during scheduling

we're using Pod Affinity to specify that the frontend-pod requires that it be scheduled on a node that has
a Pod with the label app=backend in the same rack (topologyKey: "rack"). If no node has a matching Pod
in the same rack, the frontend-pod will not be scheduled.

You can specify a weight between 1 and 100 for each instance of the
preferredDuringSchedulingIgnoredDuringExecution affinity type

You can use the In, NotIn, Exists and DoesNotExist
values in the operator field for affinity and anti-affinity.

tolerations: A

Availability zone1 Availability zone2

Node Node Node Node

avail-zone: zone2
share: shared

avail-zone: zone1
share: dedicated

avail-zone: zone1
share: shared

avail-zone: zone2
share: dedicated

Pod

Preferred labels:
avail-zone: zone1 (weight 80)
share: dedicated (weight 20)

Top priority Priority: 2 Priority: 3 Priority: 4

Rack 2

…

Rack 1

…

Node 1

Node 2

Node 10

Node 11

Node 12

Node 20

Backend pod
app: backend

Frontend Pod
Pod affinity (required)
Label selector: app=backend
Topology key: rack

Fronted pods will be scheduled to nodes
in the same rack as the backend pod.

rack: rack1

rack: rack1

rack: rack2

rack: rack2

rack: rack2

rack: rack1

Taint/Tolerations & Node Affinity

workernode-1 drive= SSD

workernode-2 cpu=xeon

workernode-4

workernode-3 gpu=yes

workernode-5

Pod
gpu=yes

Pod
cpu=xeon

Pod
drive=ssd

Pod Pod

————— —— — - — — - -
————— —— — - — — - -

—
—

—
—

—

—
 - -

—
—

—
—

—

—
—

—
—

kunectl taint nodes workernode-1 drive=ssd:NoSchedule
kunectl taint nodes workernode-2 cpu=xeon:NoSchedule
kunectl taint nodes workernode-3 gpu=yes:NoSchedule

kunectl label node kubeworker-1 drive=ssd
kunectl label node kubeworker-2 cpu=xeon
kunectl label node kubeworker-3 gpu=yes

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-app1
 namespace: dev
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nfs
 template:
 metadata:
 labels:
 app: nfs
 spec:
 containers:
 - name: nfs
 image: nfs:latest
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: “drive”
 operator: In
 values:
 - ssd
 tolerations:
 - key: “drive”
 operator: “Equal”
 value: “ssd”
 effect: “NoSchedule”

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 namespace: dev
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: “drive”
 operator: In
 values:
 - ssd
 tolerations:
 - key: “cpu”
 operator: “Equal”
 value: “xeon”
 effect: “NoSchedule”

apiVersion: apps/v1
kind: Deployment
metadata:
 name: image-processor-app1
 namespace: dev
spec:
 replicas: 3
 selector:
 matchLabels:
 app: image-processor
 template:
 metadata:
 labels:
 app: image-processor
 spec:
 containers:
 - name: image-processor
 image: image-processor
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: “drive”
 operator: In
 values:
 - ssd
 tolerations:
 - key: “gpu”
 operator: “Equal”
 value: “yes”
 effect: “NoSchedule”

First, we use Node Affinity to specify the rules for selecting nodes based on their labels

Second, we use Taints and Tolerations to indicate which pods can tolerate which taints on nodes. We can apply a taint to nodes that should only accept certain pods, and then specify
the corresponding tolerations in the pod specification
==>

==>

==>

==>

kunectl label node kubeworker-1 drive=ssd

kunectl taint nodes workernode-1 drive=ssd:NoSchedule

tolerations:
 - key: “drive”
 operator: “Equal”
 value: “ssd”
 effect: “NoSchedule”

affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: “drive”
 operator: In
 values:
 - ssd

>

>

 14

Notice: the node-role.kubernetes.io/master taint is automatically applied by the kubelet on the master node when the cluster is initialized. Its purpose is to reserve the master node
for running control plane components and system Pods, ensuring they have dedicated resources and are not scheduled with regular user Pods. To enable scheduling Pods on the
master node in Kubernetes, there are two approaches: adding a toleration or removing the applied taint kubectl describe node kubemaster | grep Taint

Taint: node-role.kubernetes.io/master:NoSchedule

tolerations:
 - key: “node-role.kubernetes.io/master”
 operator: “Exists ”

kubectl taint nodes <node-name> node-role.kubernetes.io/master-
kubectl taint nodes kubemaster node-role.kubernetes.io/master-

Adding a Toleration: By adding a toleration to the Pod's configuration that matches the taint on the master
node, the Pod can be scheduled on the master node despite the taint. This allows specific Pods to run on
the master node while preserving its dedicated role for control plane components and system Pods.

Removing the Taint: Another way to allow Pods to be scheduled on the master node is by removing the taint altogether. This approach effectively
opens up the master node for scheduling any type of Pod, including regular user Pods. However, removing the taint means that the master node may
no longer be exclusively reserved for control plane components and system Pods, potentially affecting the stability and performance of the cluster.

To achieve fine-grained control over pod scheduling and ensure pods are scheduled on specific nodes while those nodes only accept certain pods, you can use a combination of Node
Affinity and Taints and Tolerations.

Node Affinity: Node Affinity is used to specify rules that determine which nodes a pod can be scheduled on.
You can define node affinity rules based on node labels, node fields, or node selectors. By applying node
affinity to a pod, you can restrict its scheduling to specific nodes that meet the defined criteria.

Taints and Tolerations: Taints are applied to nodes to repel or prevent pod scheduling by default. However,
you can configure tolerations in the pod's configuration to allow specific pods to tolerate specific taints on
nodes. Tolerations enable pods to be scheduled on tainted nodes by matching the taint's key and value.

Define Node Affinity rules in the pod's configuration
to match specific labels or fields on production nodes

With this approach, only pods that have the appropriate tolerations and satisfy the Node Affinity rules will be scheduled
on the these nodes. Other nodes without the specific taint or lacking the required labels/fields won't receive these pods

Two Pods do not have any tolerations specified in their PodSpec, while the other two nodes do not have
any taints applied. Therefore, the scheduler can schedule these two Pods on either of the taintless nodes.

Notice: when a node becomes not ready, indicating that it is no longer available to run new workloads, two taints are automatically added to the node: "node.kubernetes.io/not-ready:NoSchedule"
and "node.kubernetes.io/not-ready:NoExecute". These taints serve different purposes and affect the scheduling and behavior of pods on the node. kubectl taint nodes <node-name> node.kubernetes.io/not-ready:NoSchedule-

kubectl taint nodes <node-name> node.kubernetes.io/not-ready:NoExecute-

You can remove the taints using the "kubectl taint" command with the "--remove" option

Warning: the default master taint exists to protect the stability and reliability of the control plane. Removing it is not recommended as it can lead to overloading the master, reduced HA, and potentially cluster failures

Bin packing

priority class & Preemption

Pod disruption budget

priority class is a way to assign a priority value to a Pod, which determines its relative importance compared to other Pods. The priority value can be any integer between 0 and
1000000, with higher values indicating higher priority.
Preemption policies determine whether a higher priority Pod can preempt(evict) a lower priority Pod to be scheduled on a node. There are three preemption policies:

"PreemptLowerPriority" (default):
Pods with this priority class are allowed to preempt

lower priority Pods if there are no nodes with available
resources to schedule them without preemption

"Never":
Pods with this priority class are never
allowed to preempt lower priority Pods

"IfNoOtherPods":
Pods with this priority class are allowed to preempt lower

priority Pods only if there are no other Pods in the cluster that
can be evicted to make room for the higher priority Pods

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000000
globalDefault: false
preemptionPolicy: PreemptLowerPriority

apiVersion: v1
kind: Pod
metadata:
 name: db-1
spec:
 containers:
 - name: db-1
 image: mysql:latest
 priorityClassName: high-priority

Once you have defined the priority class, you can assign
it to a Pod by specifying its spec.priorityClassName field.

The globalDefault field indicates whether this PriorityClass
should be used for pods without a PriorityClass

Pod Disruption Budget (PDB) in Kubernetes is a way to ensure that a certain number or percentage of pods with an application are not
voluntarily evicted at the same time. This can help to maintain high availability during voluntary disruptions like upgrades and maintenance.

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2
 selector:
 matchLabels:
 app: my-app

In this example, the Pod Disruption Budget named my-pdb specifies that at
least two pods with the label app=my-app should be available at all times

Pod A | Req
vCPu | 200
Mem | 400

Pod B | Req
vCPu | 250
Mem | 600

Pod C | Req
vCPu | 350
Mem | 500

Pod D | Req
vCPu | 300
Mem | 500

Pod E | Req
vCPu | 200
Mem | 300

Pod F | Req
vCPu | 300
Mem | 800

Pod G | Req
vCPu | 100
Mem | 250

Pod H | Req
vCPu | 300
Mem | 750

Pod I | Req
vCPu | 400
Mem | 700

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Problem 1: placement Failure

Total available capacity across kubernetes
vCPU : 600 mC memory : 1200 MB

Pod A | Req
vCPu | 200
Mem | 400

Pod B | Req
vCPu | 250
Mem | 600

Pod C | Req
vCPu | 350
Mem | 500

Pod D | Req
vCPu | 300
Mem | 500

Pod E | Req
vCPu | 200
Mem | 300

Pod F | Req
vCPu | 300
Mem | 800

Pod G | Req
vCPu | 100
Mem | 250

Pod H | Req
vCPu | 300
Mem | 750

Pod I | Req
vCPu | 400
Mem | 700

Node 1 | Avail | total
vCPu | 100 | 1000
Mem | 300 | 2000

Node 1 | Avail | total
vCPu | 0 | 1000
Mem | 0 | 2000

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Total available capacity across kubernetes
vCPU : 300 mC memory : 600 MB

Pod x | Req
vCPu | 300
Mem | 600

Migrate and Place

Pod A | Req
vCPu | 500
Mem | 300

Pod B | Req
vCPu | 400
Mem | 200

Pod C | Req
vCPu | 300
Mem | 500

Pod D | Req
vCPu | 400
Mem | 1100

Pod E | Req
vCPu | 100
Mem | 950

Pod F | Req
vCPu | 100
Mem | 750

Node 1 | Avail | total
vCPu | 100 | 1000
Mem | 1500 | 2000

Node 1 | Avail | total
vCPu | 300 | 1000
Mem | 400 | 2000

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Pod A | Req
vCPu | 500
Mem | 300

Pod F | Req
vCPu | 100
Mem | 750

Pod C | Req
vCPu | 300
Mem | 500

Pod D | Req
vCPu | 400
Mem | 1100

Pod E | Req
vCPu | 100
Mem | 950

Pod B | Req
vCPu | 400
Mem | 200

Node 1 | Avail | total
vCPu | 400 | 1000
Mem | 950 | 2000

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Node 1 | Avail | total
vCPu | 200 | 1000
Mem | 500 | 2000

Problem 2: imbalanced placement Swap and Balance

 15

BestFit: In this approach, the scheduler places the incoming Pod in the node with the least amount of free resources after placement. This strategy aims to leave as much space free as possible on every other node.
WorstFit: In this approach, the scheduler places the incoming Pod in the node with the most amount of free resources after placement. This strategy aims to fill up nodes as much as possible.

Bin packing in k8s refers to the process of efficiently utilizing resources by scheduling pods on nodes in a way that maximizes resource usage and minimizes wasted resources.
Kubernetes achieves bin packing through its scheduler, which considers factors such as resource requests, limits, and available resources on nodes to make optimal scheduling
decisions. Kubernetes scheduler follows two strategies to decide the scheduling of Pods:

Placement failures can occur in bin packing scenarios in Kubernetes when the scheduler is unable to find a suitable node to schedule a pod due to resource constraints or other constraints defined in the cluster.

scenario: there are three nodes in the cluster, each with 1000m of CPU and 2GB RAM. Currently, there are nine running pods (blue) with their allocated resource requests. However, a new pod (orange)
with a request of 300m CPU and 600MB RAM cannot be scheduled. This is due to the unavailability of any node that satisfies both the CPU and RAM requirements of the new pod. Surprisingly, even
though the entire cluster has a total of 600m CPU and 1200MB RAM available, the scheduler is unable to find a suitable node.

you can consider moving Pod A from Node1 to Node2. By doing so, you would consolidate the required resources
(400m CPU, 900MB RAM) on Node1. This would create enough available resources on Node1 for the pending
pod X to be comfortably placed by the scheduler.

The operation of moving Pod A from Node1 to Node2 can be performed manually by directly interacting
with the Kubernetes API.this can be done using command.Additionally, adjusting the priorities of your pods
 can help in scenarios where resources are scarce. By assigning appropriate priorities to your pods, you can
ensure that critical pods have higher priorities compared to less critical pods. When resources become limited,
the Kubernetes scheduler can use these priorities to make decisions about which pods to preempt in order to make room for higher priority pods. By preempting lower
priority pods, Kubernetes ensures that critical pods get scheduled and receive the necessary resources. This helps in optimizing resource utilization and ensuring that
important workloads are given priority even in resource-constrained environments.

Pod X
priorityClassName: high-priority

 —— | Req
vCPu | 300
Mem | 600

Imbalanced placement in Kubernetes refers to a situation where the distribution of pods or workloads across the nodes in a Kubernetes cluster is uneven or skewed. This can lead to certain nodes being
overloaded while others are underutilized, resulting in inefficient resource allocation and potential performance issues. There are a few common causes of imbalanced placement in Kubernetes:

Node labels and pod affinity/anti-affinity: Kubernetes provides mechanisms like
node labels and pod affinity/anti-affinity rules to influence the placement of
pods. If these rules are not properly configured or if there are inconsistencies in
the labels, pods may not be distributed evenly across nodes.

Resource requests and limits: Kubernetes allows you to specify resource requests
and limits for pods, indicating the minimum and maximum amount of resources (CPU,
memory) they require. If these values are set incorrectly or if there is a wide variation
in the resource requirements of pods, it can lead to imbalanced placement.

Node capacity and utilization: If the nodes in a Kubernetes cluster have different
capacities in terms of CPU, memory, or other resources, it can result in imbalanced
placement. Nodes with higher capacity may end up hosting more pods, while nodes
with lower capacity may remain underutilized.

There are a few common causes of imbalanced placement in Kubernetes:

scenario: Node1 has high CPU usage (90%) but relatively low memory usage (25%). On the other hand, Node3 has low CPU usage (20%) but high memory usage (85%). This imbalance in resource
utilization across the nodes can have the following impacts:

Pod B on Node1: Since Pod B is a CPU-intensive process, the high CPU usage on Node1 indicates that there might be
limited CPU resources available for Pod B during peak load situations. This can result in Pod B experiencing CPU
starvation, leading to degraded performance or even failures if it requires more CPU resources than what is available.

Pod E on Node3: As Node3 has high memory usage (85%), Pod E, which is running on Node3, might face memory
starvation during peak load scenarios. If Pod E requires additional memory resources that are not available due to
high memory usage on Node3, it can lead to out-of-memory errors or performance degradation

If we swap Pod B and Pod F between Node1 and Node3, the observation and impact remain the same. Node1 still has 40% CPU usage and 48% memory usage, while Node3 has 50% CPU usage and 55%
memory usage. With these resource utilization levels, any pods on these two nodes should still be able to handle any kind of peak load without experiencing resource starvation or performance degradation

Node-1 app:kafka

Pod2
Req: mem:300
priorityClassName: high-priority
nodeSelector:
 app: kafka

Pod
mem:150

Available mem:200

Pod
mem:150

Pod
mem:150

Evict,Reschedule ———————|
|
|
|

———

|
|

Node-2

Pod
mem:150

==>
Scheduler

Node-1

Pod2
mem:300

app:kafka

Available mem:50

Pod
mem:150

Pod
mem:150

Static Pod
A static pod is a pod that is managed directly by the kubelet on a specific node, rather than by the Kubernetes API server. A static pod is defined by a YAML manifest file that is placed
in a specific directory on the node, and the kubelet monitors that directory for changes to the manifest file

cAdvisor (short for "Container Advisor") is a component of the kubelet
that is responsible for collecting and monitoring performance metrics
for containers and pods running on a node in a Kubernetes cluster

The containers come up statically, and their manifest file is located in the directory /etc/kubernetes/manifests. This means that the Kubernetes components, such as the API server,
controller manager, and scheduler, are started as containers using pre-defined manifests located in the /etc/kubernetes/manifests directory

$ kubectl --namespace kube-system get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

etcd-kubemaster-1 1/1 Running 4 6d2h 192.168.100.11 kubemaster-1

kube-apiserver-kubemaster-1 1/1 Running 3 6d2h 192.168.100.11 kubemaster-1

kube-controller-manager-kubemaster-1 1/1 Running 3 6d2h 192.168.100.11 kubemaster-1

kube-scheduler-kubemaster-1 1/1 Running 3 6d2h 192.168.100.11 kubemaster-1

Daemonset apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: monitoring-deamon
 namespace: dev-drive-monitor
spec:
 template:
 metadata:
 labels:
 app: monitoring
 spec:
 containers:
 - name: monitoring-agent
 image: monitoring-agent
 nodeSelector:
 Drive: ssd

 selector:
 matchLabels:
 app: monitoring

A DaemonSet is a type of controller that ensures that all (or some) nodes in a cluster run a copy of a specific pod. It is often used
for system-level tasks that should be run on every node, such as log collection, monitoring, or other types of background tasks

When you create a DaemonSet, Kubernetes automatically creates a pod on each node that matches the specified label selector.
If a new node is added to the cluster, Kubernetes automatically creates a new pod on that node as well

By using labels and node selectors, you can specify which nodes in the Kubernetes cluster should run a
particular DaemonSet. This allows you to restrict the execution of the DaemonSet to specific nodes Only on nodes that have this

label, a pod of the DaemonSet
type is automatically created

The selector section specifies the label
selector used to identify which pods

are managed by the DaemonSet

what is the best way to test a DaemonSet on a limited number of nodes without consuming too many resources from the customer's service?
One approach could be to create a separate namespace with a ResourceQuota that limits the amount of resources that can be used by the
DaemonSet. This will ensure that the DaemonSet does not consume too many resources from the customer's service

 16

The Metrics Server is a component of Kubernetes that provides container resource metrics for built-in autoscaling pipelines. It collects resource metrics from Kubelets and exposes
them through the Metrics API in the Kubernetes API server. These metrics can be used by the Horizontal Pod Autoscaler and Vertical Pod Autoscaler for autoscaling purposes

API provided by the kubelet for discovering and retrieving per-node summarized stats available through the /metrics/resource endpoint

>

The Metrics Server aggregates metrics such as CPU and memory usage and stores in memory

Metrics Server

kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
node1 50m 5% 983Mi 49%
node2 47m 4% 1043Mi 52%

Cluster

$ kubectl top pod
NAME CPU(cores) MEMORY(bytes)
pod1 0m 10Mi
pod2 1m 100Mi

sudo rm /etc/kubernetes/manifests/<static-pod-manifest.yaml>
Replace <static-pod-manifest.yaml> with the filename of the manifest associated with the static pod you want to delete.

To delete a static pod in Kubernetes, you can either delete its corresponding manifest file from StaticPodPath or move the manifest file file to another path. Use the following command to remove the manifest file:

After performing either of these operations , the kubelet running on the node will detect the change in the static pod directory. It will stop managing the static pod associated with the deleted or moved YAML file,
and Kubernetes will initiate the termination process for that pod.

 Static PODs DaemonSets
 Created by the kubelet Created by Kube-API server
 Deploy Control Plane components as static pods Deploy MonitoringAgents, logging Agents on nodes

—
—

—
—

—
—

ignored by the kube-scheduler

Cluster

node node node node
daemon pod daemon pod daemon pod daemon pod

Remove a node:
DaemonSet automatically terminate the corresponding pod

Add a new node:
DaemonSet automatically create a new pod on the node

Node

Kubelet

Container Runtime Engine

 Path: staticPodPath

Pod
kube-api

|
|
|
|
|
|

|
|
|
|

…
staticPodPath: /etc/kubernetes/manifests

/var/lib/kubelet/<configuration>.yaml >

StaticPodPath is a directory path where
static pod manifests are stored on a node

Pod PodPod
etcd scheduler

Kube
control-manager

kube-api etcd scheduler

Node

2.Expose metrics

1.collect metrics

Kubelet

Master Nodes

Metrics
Server

Api-server

3.collect and

aggregate metrics
4.expose metrics HPA

Pod PodKubectl top

Kube
control-manager

Horizontal Pod Autoscaling (HPA) allows you to automatically scale out your application by adding or removing replicas
based on resource utilization metrics such as CPU utilization or custom metrics. This ensures that you have the necessary
resources to handle increased traffic or load without over-provisioning resources and incurring additional costs

Pod1 Pod1 Pod2 Pod3

.
.

<———————> <———————————————>More podsSingle pod

Before HPA scaling After HPA scaling

Vertical Pod Autoscaling (VPA) allows you to automatically scale up or down the resource requests and limits of containersin a Pod based on actual resource usage. This ensures
that each Pod has the necessary resources to handle the workload efficiently without wasting resources

After scalling
Before scalling

Pod1
Pod1

cpu:2
mem:2G cpu:4

mem:6G

——————>————————>
Here, the VPA is scaling the

cpu and mem of pod1

Scaling out, also known as horizontal scaling, is the process of adding more replicas of a Deployment or ReplicaSet to handle an increase in traffic or load

Scaling up, also known as vertical scaling, is the process of increasing the resources available to each replica of a Deployment or ReplicaSet to handle an increase in demand

VPA

Autoscaling refers to the ability of the Kubernetes cluster to automatically adjust the number of running instances of a specific workload or application based on the current
demand or load. Autoscaling helps to ensure that there are enough resources available to handle the workload while also optimizing resource utilization.
Kubernetes provides two types of autoscaling mechanisms:

kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2
metadata:
 name: php-apache
 namespace: dev
spec:
 scaleTargetRef:
 kind: Deployment
 name: php-apache
 apiVersion: apps/v1
 minReplicas: 3
 maxReplicas: 20
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50
 - type: Resource
 resource:
 name: memory
 target:
 type: Utilization
 averageUtilization: 40
 behavior:
 scaleUp:
 policies:
 - type: Pods
 value: 5
 periodSeconds: 30
 - type: Percent
 value: 100
 periodSeconds: 30
 selectPolicy: Max
 stabilizationWindowSeconds: 40
 scaleDown:
 policies:
 - type: Pods
 value: 4
 periodSeconds: 10
 - type: Percent
 value: 10
 periodSeconds: 10
 selectPolicy: Min
 stabilizationWindowSeconds: 5

apiVersion: apps/v1
kind: Deployment
metadata:
 name: php-apache
 namespace: dev
spec:
 selector:
 matchLabels:
 run: php-apache
 replicas: 1
 template:
 metadata:
 labels:
 run: php-apache
 spec:
 containers:
 - name: php-apache
 image: k8s.gcr.io/hpa-example
 ports:
 - containerPort: 80
 resources:
 limits:
 cpu: 500m
 requests:
 cpu: 200m

apiVersion: v1
kind: Service
metadata:
 name: php-apache
 namespace: dev
 labels:
 run: php-apache
spec:
 ports:
 - port: 80
 selector:
 run: php-apache

This specifies the target
Deployment for the HPA

minimum and maximum number of
replicas for the Deployment

The metrics section defines the metrics that the HPA uses to scale the Deployment. In this case, two metrics are specified: CPU utilization and memory utilization. For
each metric, the HPA calculates the average utilization across all pods over a certain period of time and compares it to the target utilization. If the actual utilization
exceeds the target utilization, the HPA increases the number of replicas. If the actual utilization falls below the target utilization, the HPA decreases the number of
replicas. By using multiple metrics, the HPA can make more informed scaling decisions

The behavior section defines the scaling behavior for the HPA. In this case, the HPA uses two policies for scaling up and two policies for scaling down. The Pods
policy specifies the number of replicas to add or remove, while the Percent policy specifies the percentage of replicas to add or remove. By using both policies, the
HPA can scale up or down more quickly or slowly, depending on the workload. The selectPolicy field specifies how the HPA should choose between the Pods and
Percent policies. In this case, it's set to Max, which means that the highest value of the two policies will be used for scaling up, and the lowest value will be used for
scaling down. The stabilizationWindowSeconds field specifies the number of seconds that the HPA should wait before it starts scaling again after a scaling event.
This helps to prevent rapid scaling, which can cause instability in the cluster

HPA uses the metrics server to collect the metrics data and then uses the scaling
algorithm to calculate the new number of replicas needed based on the current load

The Pods policy specifies that the HPA should remove 4 replicas every 10 seconds, while the Percent policy specifies that the HPA should remove 10% replicas every 10 seconds

The Pods policy specifies that the HPA should add 5 replicas every 30 seconds, while the Percent policy specifies that the HPA should add 100% replicas every 30 seconds

HPA is designed to automatically scale the number of replicas of a deployment or a replica set based on observed CPU utilization, memory
utilization, or custom metrics. This makes it well-suited for stateless workloads that can be easily scaled horizontally by adding more replicas

apiVersion: apps/v1
kind: Deployment
metadata:
 name: php-apache
 namespace: dev
spec:
 selector:
 matchLabels:
 run: php-apache
 replicas: 1
 template:
 metadata:
 labels:
 run: php-apache
 spec:
 containers:
 - name: php-apache
 image: k8s.gcr.io/hpa-example
 ports:
 - containerPort: 80
 resources:
 requests:
 cpu: “20m”
 memory: “200Mi”
 limits:
 cpu: “500m”
 memory: “1Gi”

apiVersion: "autoscaling.k8s.io/v1"
kind: VerticalPodAutoscaler
metadata:
 name: php-apache
 namespace: dev
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment
 name: php-apache
 updatePolicy:
 updateMode: "off"

kubectl describe vpa -n kube-system
…
container Recommendations.
 Container Name: php-apache
 Lower Bound:
 Cpu: 25m
 Memory: 262144k
 Target:
 Cpu: 163m
 Memory: 262144k
 Upper Bound:
 Cpu: 10173m
 Memory: 2770366988

apiVersion: "autoscaling.k8s.io/v1"
kind: VerticalPodAutoscaler
metadata:
 name: php-apache
 namespace: dev
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment
 name: php-apache
 updatePolicy:
 updateMode: "Auto"
 resourcePolicy:
 containerPolicies:
 - containerName: '*'
 mode: "Auto"
 controlledValues: "RequestsAndLimits"
 minAllowed:
 cpu: 10m
 memory: 5Mi
 maxAllowed:
 cpu: 200m
 memory: 500Mi
 controlledResources: ["cpu", "memory"]

targetRef: The reference to the target workload object that the VPA should adjust. In this case, it's a deployment with the name php-apache
updatePolicy determines how frequently the pod resource requests and limits should be updated. In this case, it's set to "Auto", which means the VPA
will automatically update the resource requests and limits based on the pod's usage
resourcePolicy defines the resource requests and limits for the containers in the target workload. In this case, there is one container policy defined
containerName: The name of the container to apply the policy to. In this case, it's set to *, which means the policy applies to all containers in the target workload
mode determines how the resource requests and limits are set. In this case, it's set to "Auto", which means the VPA will automatically adjust the resource
requests and limits based on the pod's usage.
controlledValues: The values that the VPA is allowed to set for the resource requests and limits. In this case, it's set to "RequestsAndLimits", which
means the VPA can adjust both the resource requests and limits.

controlledResources: The resources that the VPA is allowed to adjust. In this case, it's set to both CPU and memory.

The minimum resource request and limit values allowed for the container are set to 10 milliCPU and 5 MiB of memory. The maximum resource
request and limit values allowed for the container are set to 200 milliCPU and 500 MiB of memory

 Because of the updateMode field in is set to "Off", the VPA Updater component will not automatically update the resource requests and limits of the
containers in the pods. In this case, you will need to manually update the resource requests and limits of the pods when necessary

there are two ways to trigger VPA in k8s: automatic and manual,you can set
the updatePolicy field to Auto for automatic scaling or Off for manual scaling

To manually adjust the resource requests and limits, you can update the deployment or statefulset object that the VPA is targeting
kubectl describe vpa command can provide recommendations for the resource requests and limits of containers based on the resource
usage metrics collected by the VPA controller

Lower Bound: The minimum amount of CPU and memory that the container
should have to meet the resource utilization targets

Target: The target amount of CPU and memory that the container should
have to achieve the desired resource utilization levels

Upper Bound: The maximum amount of CPU and memory that the container can use

kubectl -n dev get vpa
NAME MODE CPU MEM PROVIDED AGE
php-apache off 163m 262144k True 2m7s

 Because of the updateMode field in is set to "Auto", the VPA Updater component will automatically update the resource requests and
limits of the containers in the pods.

1

2

VPA is well-suited for stateful workloads

 17
 Autoscaling

.

Pod1 Pod2 Pod3

…

Metrics Server

Horizontal Pod Autoscaler

<

>

>

Deployment
ReplicaSet

Replication Controller
StatefulSet

<

<—
—

—
—

>

<—
—

—
—

>

<—
—

—
—

>

<———————

<————————————

<—————————

2.calculate the Replicas

1.Query for metrics

3.scale the app to desired replicas

15 secs

Scall

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
php-apache Deployment/php-apache 40%/40%, 20%/50% 3 20 3 1d

Max(5,3)
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
php-apache Deployment/php-apache 30%/40%, 15%/50% 3 20 8 1d100%[3pod]

5pod

K get -n dev hpa

VPA Admission
Controler

VPA
Recommender

VPA Updater

Metrics Server

VPA

Pod
Cpu: “500m”

Deployment
|
|
|
|
|
|
|
|
|
|
|
|

>

>

>
<

>

>

> >

>

1.Configure VPA
2.Read configs from

VPA & it will compute

3.provides Pod Resource
Recommendation

Read pod Resource
Utilization Metrics

Monitors Pod Resource Utilization Metrics

5.Terminate the pod 6.Recreates Pod

8. Apply pod spec
adding cpu:”250m”

4.Pod Resource Recommendations

7.Get the Pod Resource Recommendation

——————————————————————————————————————

——————————————————————————————————————

|
|
|
|
|
|
|
|
|
|
|
|

VPA components

 Configure application
Kubernetes provides several ways to configure applications, including using ConfigMaps, environment variables, and Secrets.
ConfigMaps are Kubernetes resources that can be used to store configuration data as key-value pairs. You can create a ConfigMap with the desired configuration data, and then
reference it in your Deployment or Pod specification using the 'configMapKeyRef' field or mount it directly to the pod.

The 'env' field is used to define individual environment
variables for a container. You can define the name and
value of each environment variable using the 'name' and

'value' fields, respectively

The 'envFrom' field is used to define environment variables for a
container based on a ConfigMap or Secret. You can specify the
name of the ConfigMap or Secret using the 'configMapRef' or

'secretRef' fields, respectively

the 'valueFrom' field is used to define environment variables for a container
based on a field in another resource, such as a ConfigMap or Secret. You

can specify the name of the resource and the field using the
'configMapKeyRef' or 'secretKeyRef' fields, respectively

apiVersion: apps/v1
kind: Deployment
…
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: web
 image: myapp:latest
 ports:
 - containerPort: 80
 env:
 - name: DB_HOST
 value: "il-server2"
 - name: DB_PORT
 value: "5432"
 - name: DB_NAME
 value: "payments"

apiVersion: apps/v1
kind: Deployment
…
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: web
 image: myapp:latest
 ports:
 - containerPort: 80
 env:
 - name: DB_HOST
 valueFrom:
 configMapKeyRef:
 name: db-config
 key: db-host
 - name: DB_PORT
 valueFrom:
 configMapKeyRef:
 name: db-config
 key: db-port

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp
spec:
 replicas: 3
 selector:
 matchLabels:
 app: myapp
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: web
 image: myapp:latest
 ports:
 - containerPort: 80
 envFrom:
 - configMapRef:
 name: db-config
 -secretRef:
 name: db-secrets

apiVersion: v1
kind: ConfigMap
metadata:
 name: db-config
data:
 DB_HOST: "il-server2"
 DB_PORT: "5432"
 DB_NAME: "payments"

apiVersion: v1
kind: Secret
metadata:
 name: db-secrets
type: Opaque
data:
 DB_USER: dXNlcg==
 DB_PASSWORD: cGFzc3dvcmQ=

apiVersion: v1
kind: ConfigMap
metadata:
 name: db-config
data:
 db-host: il-server2
 db-port: "5432"
 DB_NAME: "payments"

The 'name' field in the 'configMapKeyRef' field specifies
the name of the ConfigMap, and the 'key' field specifies
the name of the key within the ConfigMap to use as the

value for the environment variable

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-configmap
data:
 DB_HOST: "mydbhost"
 DB_PORT: "5432"
 DB_NAME: "mydb"

Because we only want to add specific variables from a
ConfigMap to a container, we use the 'valueFrom' field

You can create a ConfigMap using the 'kubectl create configmap' command, or by defining a YAML file.
K get cm
k describe cm db-config

How you can use a ConfigMap to store configuration data

Environment Variables Configuration Files Command-Line Arguments
You can store configuration files in a ConfigMap and

mount them as volumes in your container
You can store environment variables in a ConfigMap

and use them to configure your application
You can store command-line arguments in a ConfigMap

and use them to configure your application

————————————-————————-————————-————————-—————-————————-————————-—————-—————-———————-—

————-——————————-————————-————————-————————-———-————————-————————-—————-—————-———————-—

—
-—

—
—

—
—

—
—

—
-—

—
—

—
—

-—
—

—
—

—
—

—
—

-—
—

—
—

—
—

—
—

-—
—

—
—

—
-—

—
—

—
—

-—
—

—
—

—
—

—
—

-—

—
-—

—
—

—
—

—
—

—
-—

—
—

—
—

-—
—

—
—

—
—

—
—

-—
—

—
—

—
—

—
—

-—
—

—
—

—
-—

—
—

—
—

-—
—

—
—

—
—

—
—

-—

———————————-—————-——————

———————————-—————-———————
—

—
—

—
—

—
—

—
—

—
—

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mycontainer
 image: myimage
 volumeMounts:
 - name: config-volume
 mountPath:/etc/config
 volumes:
 - name: config-volume
 configMap:
 name: app-configmap

we define a volume named 'config-volume' that maps to the 'app-configmap'
ConfigMap using the 'configMap' field. We then mount this volume into the
container using the 'volumeMounts' field, which specifies that the volume
should be mounted at the path '/etc/config' in the container

Now, any configuration files that are stored in the 'app-configmap' ConfigMap can be accessed by the application running in the container
at the '/etc/config' path

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mycontainer
 image: myimage
 command: ["/bin/myapp"]
 args: ["--config", "/etc/myapp/config.yaml"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/myapp/
 volumes:
 - name: config-volume
 configMap:
 name: my-configmap

Environment vars

/etc/file

Pod
File or env vars apiVersion: v1

kind: ConfigMap
metadata:
 name: db-config
data:
 db-host: il-server2
 db-port: "5432"
 DB_NAME: "payments"

dGlnZHajsurn
JahuNrux8dmx
hUd4NbvvE4s0
9sdej3mdMksp
AXI6cGFzczEy
MzQ

Secret

Config map

dGlnZHajsurn
JahuNrux8dmx
hUd4NbvvE4s0
9sdej3mdMksp
AXI6cGFzczEy
MzQ

> >>

>

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-configmap
data:
 db-host: ir-server2
 db-port: "5432"
 DB_NAME: "payments"

Config map
volumes: - name: config-volume

 configMap: name: app-configmap
<———————>

volumeMounts

- name: config-volume

mountPath:/etc/config

Pod

CM Define

Connect

Use

>
>

>

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-configmap
data:
 config.yaml: |
 setting1: value1
 setting2: value2

Vars

Volume

 18

Environment variables can be used to pass configuration information to the container, such as database connection strings or API keys. You can define environment variables
in the Deployment or Pod specification using the 'env' field, the 'envFrom' field, and the 'valueFrom' field.

Secrets are similar to ConfigMaps, but are used to store sensitive information such as passwords, tokens or API keys. You can create a Secret with the desired sensitive information,
and then reference it in your Deployment or Pod specification using the 'secretKeyRef' field.

 you can also create a secret by running the kubectl create secret command

kubectl create secret generic db-secret --from-literal=username=myuser --from-literal=password=mypassword

This command will create a secret named db-secret with two key-value pairs: username and password

 To use a secret in a pod, you can mount it as
a volume or use it as an environment variable
spec:
 containers:
 - name: my-container
 image: my-image
 volumeMounts:
 - name: secret-volume
 mountPath: /etc/myapp/secret
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: db-secret

 To update a secret, you can use the kubectl edit secret
command or edit the yaml file directly and apply the changes

kubectl edit secret db-secret

arye@dev: kubectl get secrets
NAME TYPE DATA AGE
default-token-abc12 kubernetes.io/service-account-token 3 4d
db-secret Opaque 2 2h

The DATA column shows the number of
data items (key-value pairs) in each secret

arye@dev: kubectl describe secret db-secret
Name: db-secret
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
password: 16 bytes
username: 6 bytes

kubectl get secret db-secret -o jsonpath='{.data.password}' | base64 --decode

By default, the values of the key-value pairs in a secret are base64-encoded to provide a
basic level of obfuscation. To decode the values, you can use the base64 command

Kubernetes Secrets use base64 encoding to obfuscate the sensitive data, it is important to note that base64 encoding is not a form of encryption and can be easily decoded

Using external encryption tools or key management systems to secure sensitive
data before storing it in Kubernetes Secrets can enhance security.(HashiCorp
Vault, Azure Key Vault, and AWS Key Management Service)

Warning

you can use access controls to limit who can access the sensitive data. K8s provides
various mechanisms for controlling access, such as RBAC and network policies, that
can be used to limit access to sensitive data to only authorized users and applications

two solutions to solve this problem
>>

 19

There are several types of secrets in Kubernetes, including:
1 Opaque: This is the default secret type in Kubernetes. It can be used to store any arbitrary data and is encoded in base64.
2 TLS: This type of secret is used to store TLS certificates and keys. It contains two keys: tls.crt and tls.key.
3 Docker-registry: This type of secret is used to authenticate with a Docker registry. It contains the username and password for the registry.
4 SSH: This type of secret is used to store SSH keys. It contains the private key and the public key.
5 Service account: This type of secret is automatically created by Kubernetes when a service account is created. It contains a token that can be used to authenticate the service account.

> >

————————————————————————-—————————-————————-————————-————————-————————-————————-—————-

apiVersion: v1
kind: Pod
metadata:
 name: my-webapp-pod
spec:
 initContainers:
 - name: redis-setup
 image: redis:latest
 command: ["sh", "-c"]
 args:
 - |
 redis-cli ping || exit 1
 redis-cli config set maxmemory 1gb
 redis-cli config set maxmemory-policy allkeys-lru
 redis-cli config set save ""
 containers:
 - name: webapp
 image: my-webapp-image
 ports:
 - containerPort: 80
 env:
 - name: REDIS_HOST
 value: redis-service
 - name: REDIS_PORT
 value: "6379"

Init containers have their own lifecycle, and they are considered successful if they complete their tasks without error. If an init container fails, Kubernetes will
attempt to restart it until it succeeds, which ensures that the main container(s) in the pod are not started until the initialization tasks are complete

An init container is a special type of container that runs before the main container(s) in a pod. The purpose of an init container is to perform some initialization or setup tasks that
are required before the main container(s) can start running. Init containers are defined in the same YAML file as the pod specification, alongside the main container(s). They can be
used to perform tasks such as setting up a database schema, downloading necessary files, or waiting for a specific service to become available

The init container uses the Redis image and runs a shell command that performs the following tasks:
• Check if the Redis server is running by pinging it
• Set the maximum memory limit to 1 gigabyte
• Set the eviction policy to "allkeys-lru"
• Disable automatic snapshots by setting the save policy to an empty string

After completing its tasks, the init container exits and is terminated. The main container
then starts running and serves the web application for the duration of the Pod's lifecycle

When the Pod is started, the migrate-db container runs first and performs the database migration. Once the
migration is complete, the mysql-db container starts and runs the application, which now uses the migrated database

Example 1

apiVersion: v1
kind: Pod
metadata:
 name: mysql-db
spec:
 containers:
 - name: mysql
 image: mysql:5.7
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db-secrets
 key: password
 initContainers:
 - name: migrate-db
 image: mysql:5.7
 command: ['sh', '-c', 'mysql -h ${DB_HOST} -u root -p$
{DB_PASSWORD} ${DB_NAME} < /migrations/migrate.sql']
 env:
 - name: DB_HOST
 value: 127.0.0.1
 - name: DB_NAME
 value: mydb
 - name: DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db-secrets
 key: password
 volumeMounts:
 - name:migrations
 mountPath: /migrations
 volumes:
 - name: migrations
 configMap:
 name: db-migrations

 initContainer

Example 2

 Application Lifecycle Management

Pending Running

Failed

Succeeded

->->->-->->->-

->->->-

->->->-

 Pod lifecycle

When a pod is created, it enters the pending phase. During this phase, the
Kubernetes scheduler assigns the pod to a node and the container images
are pulled from the container registry. The pod remains in the pending
phase until all of its containers are ready and scheduled to run on a node

Once a pod's containers are scheduled to run on a node, the pod enters the running phase

When a container in a pod completes its task successfully, the container enters
the Succeeded phase and the pod is considered to have completed its task

When a container in a pod fails or crashes, the container enters the Failed phase

Here are the key phases in the lifecycle of a Pod in Kubernetes:

Pod

init container Readness

Main container

Sidecar container
———

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

..

Backup<

Restore if
needed

>

———————————————————————————————————> t

 20

 Job & CronJobs
Job is a type of resource that allows you to create and manage a finite or batch process in your cluster. Jobs are commonly used for tasks that need to be run once or
a few times, such as data processing, backups, or migrations

Let's say you have a web application that periodically needs to generate reports based on user data. You could create a
CronJob that runs a script to generate the report and then terminates when the report is complete.

The backoffLimit specifies the number of times k8s
should retry the Job if it fails before giving up

Job will run at the top of every hour

CronJobs in Kubernetes are a way to schedule and automate the execution of Jobs on a recurring basis. A Job is a Kubernetes object that creates one or more Pods to perform
a specific task, and a CronJob is a higher-level abstraction that allows Jobs to be scheduled according to a specific time or interval, similar to the Unix cron utility.

A Job creates one or more Pods and will continue to retry execution of the Pods until a specified number
of them successfully terminate. As pods successfully complete, the Job tracks the successful completions.
When a specified number of successful completions is reached, the task (ie, Job) is complete

apiVersion: batch/v1
kind: CronJob
metadata:
 name: report-generation-cronjob
spec:
 schedule: "0 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 ttlSecondsAfterFinished: 100
 containers:
 - name: report-generator
 image: my-django-app:v1
 env:
 - name: DJANGO_SETTINGS_MODULE
 value: myapp.settings
 command: ["python", "manage.py", "generate_report"]
 restartPolicy: Never

apiVersion: batch/v1
kind: Job
metadata:
 name: data-processing-job
spec:
 backoffLimit: 3
 template:
 spec:
 containers:
 - name: data-processor
 image: data-processor:v1.4
 command: ["python", "process_data.py"]
 restartPolicy: Never

CronJobs create Jobs which in turn create Pods to run the task

Notice: By default, completed Jobs and Pods are retained after running. To automatically clean up completed
Jobs, you can set `.spec.successfulJobsHistoryLimit` and `.spec.failedJobsHistoryLimit` on the CronJob

This will delete the Pod 100 seconds after it finishes

Sidecar container is a container that is deployed alongside a main container in a pod . The main container is typically an application that performs some specific function, while
the sidecar container provides support or complementary functionality to the main container

apiVersion: v1
kind: Pod
metadata:
 name: db-pod
spec:
 containers:
 - name: db-container
 image: my-database-image
 env:
 - name: DATABASE_URL
 value: "postgresql://my-database-hostname:5432/my-database"
 ports:
 - containerPort: 5432
 volumeMounts:
 - name: db-data
 mountPath: /var/lib/postgresql/data

 name: sidecar-container
 image: my-sidecar-image
 env:
 - name: BACKUP_LOCATION
 value: "s3://my-bucket/my-backups"
 - name: DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db-secrets
 key: database-password
 volumeMounts:
 - name: backup-data
 mountPath: /backups
 - name: db-secrets
 mountPath: /secrets
 command: ["/bin/sh", "-c"]
 args:
 - |
 while true; do
 pg_dump -U postgres -h localhost my-database | gzip > /backups/my-
database-$(date +%Y-%m-%d-%H%M%S).sql.gz; s3cmd put /backups/my-database-
*.sql.gz "$BACKUP_LOCATION";
 sleep 86400;
 s3cmd put /backups/my-database-*.sql.gz "$BACKUP_LOCATION";
 done
 volumes:
 - name: db-data
 emptyDir: {}
 - name: backup-data
 emptyDir: {}
 - name: db-secrets
 secret:
 secretName: db-secrets

 MULTI-CONTAINER PODs:

The main container is running a database service and is exposing port 5432 for incoming database connections.
The sidecar container is configured to perform backups of the database

The two containers are communicating using shared volumes and environment variables. The main container is using a volume mount
called "db-data" to store its data files, while the sidecar container is using a volume mount called "backup-data" to store its backup files

The sidecar container is running a script that periodically backs up the database and stores the backup files in the "/backups" directory.
The script is also using the "pg_dump" command to perform the backup and gzip to compress the backup file. The backup location is specified in
the environment variable "BACKUP_LOCATION", which is set to an S3 bucket. The script is running in an infinite loop and sleeps for 24 hours
between each backup.

—————-————————-————————-————————-—————-

—————-————————-————————-————————-—————-

—
—

—
—

—
—

-—
—

—
—

—
—

One example of how a sidecar container can be used with a database service in a Kubernetes deployment:

The sidecar container can periodically backup the database to a remote location to ensure data resiliency

The idea behind the sidecar pattern is to keep the main container focused on a specific task or functionality, while delegating other
tasks to the sidecar container. This allows for more modular and flexible deployment architectures, as the sidecar container can be
updated or replaced independently of the main container

Logging and Monitoring: A side containers can be used to collect and forward logs and metrics from the main application container to a central monitoring system
Backup and Recovery: A side containers can be used to perform backup and recovery operations on the main application container

Although containers inside a pod share a common network and storage, they have independent lifecycles and can be created, updated, and deleted individually

Pod
SidecareContainerApp-container

Storage
Network

Lifecycle Lifecycle

Sidecar Container Adapter> >

Service mesh: A sidecar container can be used to implement a service mesh such as Istio or Linkerd. A service mesh provides additional functionality for managing and securing communications between
services running in Kubernetes

Pod
Sidecare
Container

db-container

> Ambassador

> >

———————||

===== 24Dump

Storage /var/lib/postgresql/data /backups
>>

A sidecar process responsible for periodic
backups of the database to an S3 bucket

Amazon
S3——————

—
—

—
—

—
—

-—
—

—
—

—
—

 important use cases
>

>

>

CronJobs Trigger Activation time

Job
Pod

schedule: "0 0 * * *"

jobTemplate >

—
>

 Rollout & Rollback

Rollback is performed by updating container with the previous version of the container image
Rollout is the process of updating a Deployment or ReplicaSet to a new version of your application

When you perform an upgrade to a deployment, Kubernetes creates a new replica set with the updated container image and
configuration, and gradually replaces the pods managed by the old replica set with the pods managed by the new replica set

Deployment ———>

rolloutrollback

Create

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-imp
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 1
 maxSurge: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.18
 ports:
 - containerPort: 80

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-imp
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17
 ports:
 - containerPort: 80

——————>

After adding the 'strategy' section to the YAML
file and applying it to the Kubernetes cluster using

the 'kubectl apply' command, Kubernetes will
start a RollingUpdate for the Deployment

kubectl apply -f deployment.yaml

Some of Deployment strategies to perform rollouts

V1.0

. . .

Before deployment

.

. . .

.

. . .

V2.0

. . .

V1.0

. . .

Before deployment

V2.0

. . .

After deployment After deployment

-> -> V1.0

. . .

Before deployment

V2.0

. . .

After deployment

V2.0 standby

. . .

V1.0 standby

. . .

V1.0

. . .

Before deployment

V2.0

. . .

After deployment

V1.0

Rolling updates are performed by gradually replacing
instances of an old version of a container with instances
of a new version. (default deployment strategy)

Recreate strategy deletes all the old Pods
before creating new ones. This can result in
some downtime for your application

Blue/Green strategy creates a new set of Pods running
the updated version of your application alongside the old
set of Pods running the previous version

Canary strategy updates a small percentage of Pods with
the new version of your application, while the rest of the
Pods continue to run the previous version

>> > >

 21

ReplicaSet-2

ReplicaSet-1

'maxUnavailable' specifies the maximum number of replicas that can be unavailable during the update process. This parameter ensures that the application always has a minimum number of replicas available, even during the
update process. For example, if you set 'maxUnavailable' to 1, Kubernetes will not terminate more than one replica at a time during the update process, ensuring that the application always has at least one replica available.

'maxSurge' specifies the maximum number of new replicas that can be created during the update process. This parameter ensures that the update process is efficient and does not overload the system with too many new replicas
at once. For example, if you set 'maxSurge' to 1, Kubernetes will not create more than one new replica at a time during the update process, ensuring that the application remains stable and functional throughout the update.

During a Rolling update , the 'maxUnavailable' and 'maxSurge' settings determine the rate at which replicas are replaced, ensuring that the application remains available and stable throughout the update process

Update image to nginx:1.2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

 you can also run a rolling update in Kubernetes using the 'kubectl' command

kubectl create deployment nginx-imp —image nginx:1.17 —replicas 3

To perform a rolling update using the 'kubectl' command, you need to have a Deployment defined in Kubernetes

create a Deployment with the 'nginx:1.17'
image and three replicas

use the 'set' command in 'kubectl' to update the image used by the Deployment

kubectl set image deployment/nginx-imp nginx=nginx:1.18
After executing the 'set' command, Kubernetes will start

a rolling update for the 'nginx-imp' Deployment

You can monitor the progress of the rolling update by running the following command

kubectl rollout status deployment/nginx-imp If you want to pause the rolling update at any
time, you can use this command:

kubectl rollout pause deployment/nginx-imp

If you want to undo the update and roll back to the previous version, you can use the following command:

kubectl rollout undo deployment/nginx-imp

NAME READY STATUS RESTARTS AGE
pod/nginx-imp-f32gt99mnj-ihd7t 1/1 Running 0 10m
…
pod/nginx-imp-f32gt99mnj-ki34f 1/1 Running 0 10m

NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-imp-f32gt99mnj 1 1 1 10m
replicaset.apps/nginx-imp-ht5g34kpz2 0 0 0 12m

kubectl get pod,rs

pod name-Replicaset id-pod id

Old Replicaset New Replicaset

NAME READY STATUS RESTARTS AGE
pod/nginx-imp-ht5g34kpz2-ihd7t 1/1 Running 0 10m
…
pod/nginx-imp-ht5g34kpz2-ki34f 1/1 Running 0 10m

NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-imp-f32gt99mnj 0 0 0 14m
replicaset.apps/nginx-imp-ht5g34kpz2 1 1 1 16m

kubectl get pod,rs

———>

—>

>

>

>

>

You can use 'kubectl rollout history' command to view the revision history of a Deployment, including the
rollout status, the version of the Deployment, and the date and time of the revision

kubectl rollout history deployment nginx-imp
deployment.apps/nginx-imp
REVISION CHANGE-CAUSE
1 kubectl create deployment nginx-imp --image=nginx:1.17 --replicas=5
2 kubectl set image deployment/nginx-imp nginx=nginx:1.18

The 'CHANGE-CAUSE' field in the 'kubectl rollout history' output is an annotation that
is added to the Deployment when it is updated using the 'kubectl set' command
This annotation can be useful for tracking changes and providing
additional information about the update process

To change the 'CHANGE-CAUSE' annotation for a Deployment in Kubernetes, you can use the 'kubectl annotate' command

kubectl annotate deployment nginx-imp kubernetes.io/change-cause="updated to nginx 1.19" --overwrite

kubectl rollout undo deployment/nginx-imp --to-revision=2

kubectl rollout history deployment nginx-imp
deployment.apps/nginx-imp
REVISION CHANGE-CAUSE
1 kubectl create deployment nginx-imp --image=nginx:1.17 --replicas=3
2 updated to nginx 1.18

>

————Revision 1

Revision 2

Revision 1

—
—

—
—

>
—

—
—

—
>

rollout

rollback

Create a new
version

Pod Pod Pod
app: v1.17 app: v1.17 app: v1.17

Pod Pod Pod
app: v1.17 app: v1.17 app: v1.17

Pod Pod Pod
app: v1.18 app: v1.18 app: v1.18

Liveness
Probe

Execution

Liveness
Probe

Execution

Liveness
Probe

Execution

Readiness
Probe

Execution

Readiness
Probe

Execution

Readiness
Probe

Execution

Startup
Probe

Execution

}

}

}

}

}

}

{

Successful Probe Reply

Successful Probe Reply

Successful Probe Reply

Successful Probe Reply

Successful Probe Reply

Successful Probe Reply

periodSeconds

periodSeconds
periodSeconds

periodSeconds

SuccessTreshold=3
SuccessTreshold=3

Pod Condition : Ready
Pod Phase : Running Container: Running

InitialDelaySeconds
 for
 Readiness Probe

InitialDelaySeconds
 for
 Liveness Probe

Start Readiness & liveness Probes
Successful Probe Reply

SuccessTreshold=1

InitialDelaySeconds
 for

 Startup Probe

Pod Condition : Pod scheduled
Pod Phase : Pending
Container: Waiting

—|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||—

Po
d

Ph
as

e
: R

un
ni

ng

C
on

ta
in

er
: R

un
ni

ng

Po
d

C
on

di
tio

n
: N

ot
 R

ea
dy

 (d
uo

 to
 R

ea
dy

 P
ro

be
)

Wait
periodSeconds

Is last attempt
Readiness

Probe
success?

——> ——>

—
—

>

<——————

<—
—

Readiness FAILURE
NO TRAFFIC

No

No Yes

Wait
periodSeconds

Is last attempt <——

—
—

>

Liveness FAILURE
NO TRAFFIC

No

Yes
<——
No

Liveness
Probe

success?

Wait
periodSeconds

Is last attempt ——> ——>

—
—

>
———————

<—
—

Startup FAILURE
Pod STOPED

No

No Yes

——————>

<—
————— ———————

—
—

Pod running and
receiving traffic

Wait
periodSeconds

—> <—

|
|
|
|
|
|
|

|
|
|
|
|
|
|

Startup
Probe

success?

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

—-—><—-—

Yes

Pod started
|
|

YesYes

 Self-Healing Application
Self-healing applications in Kubernetes are applications that can detect and recover from failures automatically without human intervention. Kubernetes provides several
mechanisms to enable self-healing, including probes, replica sets, and deployments. These components together ensure that the desired state of the application is maintained,
even in the face of failures, updates, or changes in the environment.

The main idea behind ReplicationControllers and Deployments in Kubernetes is to
maintain a desired number of pod replicas running at any given time. In other words,
they ensure that a particular pod (or set of pods) always remains up and running.

Probes play a vital role in ensuring the health and availability of pods and containers running in a Kubernetes cluster. By
periodically checking the health of containers, Kubernetes can take appropriate actions such as restarting containers,
marking pods as ready to receive traffic, or delaying traffic until an application inside a container has started successfully

Liveness probes
 Kubernetes uses liveness probes to know when to restart a Container. For
example, a liveness probe could catch a deadlock, where an application is
running, but unable to make progress. Restarting a Container in such a
state can help to make the application more available despite bugs.

Readiness probes
Kubernetes uses readiness probes to know when a Container is ready to start
accepting traffic. A Pod is considered ready when all of its Containers are
ready. One use of this signal is to control which Pods are used as backends for
Services. When a Pod is not ready, it is removed from Service load balancers.

Kubernetes provides three main types of probes to check the health of Pods

Startup Probes
These probes let Kubernetes know when your application has
started. If such a probe is configured, it disables liveness and
readiness checks until it succeeds, making it useful for slow-
starting containers.

———-———————-————————-—————-————————-————————-—————-——
>>>

| | |
|

The probes can be implemented in several ways

HTTP checks: Kubernetes sends an HTTP request to the specified path
of your application. If the application responds with a success status code
(200 - 399), the probe is successful. Otherwise, it's considered a failure

TCP checks: Kubernetes tries to establish a TCP connection
to your application on the specified port. If it can establish a
connection, the probe is successful. Otherwise, it's failed.

Exec checks: Kubernetes executes the specified command within
your container. If the command returns an exit status of 0, the
probe is successful. Otherwise, it's considered a failure.

———-———————-————————-—————-————————-————————-—————-—————
>>>

| | |

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 livenessProbe:
 httpGet:
 path: /healthz
 port: 8080
 initialDelaySeconds: 30
 periodSeconds: 10

The Liveness Probe is configured to use an HTTP GET request to check
the container's health. The request is sent to the path "/healthz" on port
8080, which is where the container exposes its health check endpoint

The "initialDelaySeconds" field indicates that
k8s should wait 30 seconds before checking

the container's health for the first time

The "periodSeconds" field indicates that
Kubernetes should check the container's

health every 10 seconds thereafter

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 ports:
 - containerPort: 8080
 livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 periodSeconds: 10
 failureThreshold: 3

We use the tcpSocket handler to check the container's health by
trying to open a TCP connection to port 8080. If the connection
is successful, the Liveness Probe is considered successful

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 livenessProbe:
 exec:
 command:
 - /bin/sh
 - -c
 - /usr/bin/custom-script.sh
 initialDelaySeconds: 30
 periodSeconds: 10

This probe runs a script inside the container. If the
script terminates with 0 as its exit code, it means
the container is running as expected

The kubelet is responsible for running probes
 on containers to check their health

}

|
|

 22

apiVersion: apps/v1
kind: Deployment
metadata:
 name: web-app
spec:
 replicas: 3
 selector:
 matchLabels:
 app: web-app
 template:
 metadata:
 labels:
 app: web-app
 spec:
 containers:
 - name: web-container
 image: my-web-image
 ports:
 - containerPort: 8080
 readinessProbe:
 httpGet:
 path: /healthz
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 5
 failureThreshold: 3

apiVersion: v1
kind: Service
metadata:
 name: web-service
spec:
 selector:
 app: web-app
 ports:
 - name: http
 port: 80
 targetPort: 8080
 type: ClusterIP

failureThreshold is a parameter that can specify how many consecutive failures are allowed before the container is considered to have failed the probe.
If the deployment fails the probe check three times in a row, the kubelet will restart the pod K describe deploy web-app

Events
 readiness probe failed

If a container fails the Readiness Probe check, it will be removed from the list of endpoints used by the service as a backend.
This ensures that the service does not send requests to the container until it becomes ready to receive them again.

Web-app

Pod

Container

Pod

Container

Pod

Container

 Service

——————————————
—

—
—

—
—

—
— kubectl describe svc web-service

Name: web-service
Namespace: default
Labels: <none>
Annotations: Selector: app=web-app
Type: ClusterIP
IP: 10.0.0.1
Port: http 80/TCP
TargetPort: 8080/TCP
Endpoints: 10.0.0.2:8080, 10.0.0.3:8080, 10.0.0.4:8080
Session Affinity: None
Events: <none>

10.0.0.310.0.0.2 10.0.0.4

Conditions:
 Type Status
 ---- ------
 Initialized True
 Ready False
 ContainersReady True
 PodScheduled True

Conditions:
 Type Status
 ---- ------
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True

kubectl describe pod …

<-<-<-<-<-<-<-<-

<-
<-

<-
<-

<-

w
eb

-s
er

vi
ce

God help it

Example: a Web Application with Readiness Probe

 23Cluster maintenance Node maintenance
Node maintenance in Kubernetes refers to the process of temporarily taking a node out of the cluster to perform maintenance tasks such as upgrading the operating system,
applying security patches, replacing hardware or performing other tasks that require the node to be offline. During this time, any workloads running on the node will be evicted
and rescheduled onto other nodes in the cluster to ensure high availability and minimal disruption to users.

After the maintenance tasks are completed, the node can be brought back online and added back to
the cluster. Kubernetes will automatically detect the new node and begin scheduling pods on it again.
It's important to note that when a node is added back to the cluster, Kubernetes will not automatically
move all the evicted pods back to the node. Instead, the scheduler will treat the node like a new node
and schedule new pods onto it based on the available resources and workload requirements

Cordon Drain UnCordonPerform maintenance tasksAdd a Node Remove added Node—>——>— —>— —>— —>—

To avoid any service disruptions during node maintenance, it's important to ensure that
your Kubernetes cluster has sufficient resources and capacity to handle the workload
of the evicted pods. If a node is added to the cluster, it increases the overall resources
available for scheduling pods, reducing the chances of service disruptions. (optional)

The cordon command marks a node as unschedulable. It prevents
new pods from being scheduled on the node while allowing existing
pods to continue running. By running kubectl cordon <node-name>,
you indicate that the node is entering maintenance and should not
receive any additional workload.

When maintenance needs to be performed on a
node, it should be cordoned as the first step

The drain command is used to gracefully evict pods from the
node that is undergoing maintenance. It triggers the rescheduling
of active pods onto other available nodes in the cluster. Running
kubectl drain <node-name> initiates the process of moving pods
off the node, ensuring that they are not abruptly terminated.

Once the drain command completes and all the pods have been successfully
rescheduled onto other nodes, you can perform the required maintenance
tasks on the drained node. This may include updating the operating system,
performing security patches, or any other necessary maintenance activities

>>

>

>

>

Nodes need to be regularly updated and
maintained to keep the cluster healthy

 Steps to perform maintenance on a node in Kubernetes

Not adding a replacement node may cause the cluster to become
unready, especially when there are a large number of pods running
on the node being taken down and insufficient resources available
on the remaining nodes to allocate to those pods

——————————————————————

———————————————————————
—

—
—

—
—

—
—

—
—

—
—

Node
maintenance

steps

kubectl cordon kubeworker-1

kubectl drain kubeworker-1

Start node updating …..

kubectl uncordon kubeworker-1

2

3

4

1

Operating system

Kubelet

Pods .

> > > >>

> > > > > >>

> > > > > >>

-———————————Eviction Thresholds

Kube Reserved

System Reserved

Allocatable

 Reserving resources for the operating system and the kubelet in Kubernetes is crucial for maintaining stability

Kubernetes nodes can encounter resource starvation issues when pods consume all available capacity on a node, resulting in an insufficient allocation of resources for critical system daemons
and processes that drive the functioning of the operating system and Kubernetes infrastructure. This imbalance can subsequently lead to cluster instability and performance degradation.
configuring kubelet resource reserves is a good way to prevent resource starvation issues on Kubernetes nodes.
Here are some ways kube and system resource reserves can help:

kube-reserved This reserves resources for Kubernetes system daemons like kubelet, container runtime, node problem detector, etc.
Prevents starvation of critical components.

system-reserved Reserves resources for the underlying node's kernel and system services. Leaves room for OS processes.

eviction-hard The kubelet will evict pods when available resources drop below this threshold to maintain reserves

amount of compute resources that are available for pods

To configure these reserves, you can set flags on the kubelet service like: --kube-reserved=cpu=500m,memory=1Gi
--system-reserved=cpu=1,memory=2Gi
--eviction-hard=memory.available<500Mi

<->

Pod

Pod

Pod Pod Pod

Ready Scheduling Disabled

Pod

Pod Pod

Pod

Pod Pod

Pod

Pod Pod

Pod Pod

Ready Ready Ready Ready ReadyScheduling Disabled

UnCordonCordon Drain

SPOF
Single Point of Failure (SPOF) refers to a component or resource that, if it fails, can cause a complete or partial outage of the entire system. This means that the failure of a single
component can result in the unavailability or degraded performance of the overall Kubernetes cluster. Identifying and mitigating SPOFs is crucial for ensuring high availability and
reliability in a Kubernetes environment. Here are some recommendations for ensuring the minimum amount of SPOFs for critical Kubernetes components:

Kubernetes Control Plane - Need at least 3 master nodes spread across availability
zones. This ensures high availability of API server and controller manager.

etcd - For production, need at least 3 etcd instances, 5 for better
redundancy. Should be co-located with control plane nodes.

Worker Nodes - No specific minimum, but have at least 3
nodes in a cluster and spread them across zones.

Ingress Controllers - Need 2+ ingress controllers like
Nginx for redundancy. Configure with a load balancer.

Cluster Networking - Should have high availability at the network
level - multiple switches, routers etc. Avoid SPOF in networking.

Data Storage - Use cluster-wide storage like
GlusterFS, Rook, OpenEBS with replication.

Load Balancers - Front load balancers with at
least 2 instances or use external LB services.

 Worker node Master Worker node

[after updating all nodes]

 Worker node

UnScheduleable

 Worker node

Down

kubeworker-1

 up

New node1
2

3
———————————————————>> Reschedule

|
|
|

———>

—
—

Other nodes

New node

Perform maintenance tasks

(Steps 2,3)

schedulable 45
· ·

 Cluster upgrade
It's important to keep k8s components up-to-date with the latest stable version to ensure that the cluster is secure and stable. Here are the several methods for upgrading a k8s cluster:

Kubeadm: Kubeadm is a popular tool for bootstrapping and managing Kubernetes clusters, particularly
for self-provisioned clusters. Kubeadm provides commands like `kubeadm upgrade plan` and `kubeadm
upgrade apply` to systematically upgrade the control plane and worker nodes. It simplifies the process of
upgrading kubeadm-provisioned clusters.

Kubernetes Tools: Various Kubernetes deployment tools such as Kops, Kubespray, Rancher, and
others provide their own mechanisms for cluster upgrades. These tools typically offer automation
and specific commands for upgrading the cluster. For example, Kops provides the `kops upgrade
cluster` and `kops rolling-update` commands to handle the upgrade process.

Cloud Provider Upgrades: Managed Kubernetes services offered by cloud providers, such as
Amazon EKS, Azure AKS, and Google GKE, often handle control plane upgrades transparently.
The cloud provider automatically manages the upgrade process, including the control plane
components. As a user, you only need to update the node machine images to the desired version.

Blue-Green Deployment: The blue-green deployment approach involves creating a parallel "green" cluster
with the desired version while the existing "blue" cluster is still running. Once the green cluster is ready, you
switch traffic over to it, ensuring minimal downtime. After verifying the green cluster's stability, you can
delete the old blue cluster. This method allows for a smooth transition and rollback option if any issues arise.

Kubernetes does support the last three minor versions for 9 months and provides patches for security and bug fixes during that time

V 1.25.3
MAJOR MINOR PATCH

Features
Functionalities

Bug fixes

Kubernetes releases its versions
based on semantic versioning

———————Supported ———————-

V 1.26V 1.25V 1.24V 1.23V 1.22 ————————————

un-Supported Latest

when updating Kubernetes it is generally recommended to update only one
minor version at a time, Minor version updates are meant to be backwards
compatible. So going from 1.x to 1.x+1 should work smoothly

The maximum amount of difference that can exist between k8s components

• Control plane components: 0 versions (identical)
• kubelet/kubectl: Up to 2 minor versions behind
• etcd: Up to 1 minor version behind API server

For production Kubernetes clusters, the general recommendation is to
stay within 1 minor version of the latest stable Kubernetes release.

Before upgrading, it is important to review the
release notes and documentation for the target
Kubernetes version. Check for any specific
requirements or considerations.

Back up any critical data and configurations, including etcd
data, you maybe need to roll back the upgrade.

Step 1: Prepare for the Upgrade
ETCDCTL_API=3 etcdctl snapshot save snapshot.db \
 --endpoints=$ENDPOINTS \
 --cacert=/etc/kubernetes/pki/etcd/ca.crt \
 --cert=/etc/kubernetes/pki/etcd/server.crt \
 --key=/etc/kubernetes/pki/etcd/server.key

Upgrade the control plane components (API server,
controller manager, and scheduler) and etcd (if
applicable) on each control plane node one by on

Typically, this involves running a series of commands
with `kubeadm` to upgrade the control plane
components.

Step 2: Upgrade Control Plane Nodes
A. Drain the control plane node
kubectl drain <control-plane-node-name> --ignore-daemonsets

B.Upgrade kubeadm
sudo apt-mark unhold kubeadm
sudo apt-get upgrade -y kubeadm=1.26.7-00
sudo apt-mark hold kubeadm

C. Plan the upgrade
sudo kubeadm upgrade plan

Upgrade to the latest version in the v1. series:
COMPONENT CURRENT TARGET
kube-apiserver v1.25.3 v1.26.7
kube-controller-manager v1.25.3 v1.26.7
kube-scheduler v1.25.3 v1.26.7
kube-proxy v1.25.3 v1.26.7
CoreDNS v1.9.1 v1.9.3
etcd 3.5.4-0 3.5.6-0
You can now apply the upgrade by executing the following command:
 kubeadm upgrade apply v1.26.7

D. Perform the upgrade
sudo kubeadm upgrade apply v1.26.7

E.Upgrade kubelet and kubectl

F. Restart kubelet and Uncordon the node

sudo systemctl daemon-reload
sudo systemctl restart kubelet
kubectl uncordon <control-plane-node-name>

C:Analyzes the current state of the cluster and generates a plan for
upgrading the control plane components to a newer version of Kubernetes.

Upgrade the worker nodes one by one. This can be done
by draining and cordoning each node, upgrading the
necessary components, and then uncordoning the node.

The upgrade process for worker nodes typically involves
upgrading the kubelet, kube-proxy, and any other relevant
components.

Step3: Upgrade Worker Nodes

B. Upgrade kubeadm, kubelet

kubectl drain <worker-node-name> --ignore-daemonsets

A. Drain the control plane node
C.Upgrade the k8s configuration

sudo kubeadm upgrade node

E. Restart kubelet and Uncordon the node

sudo systemctl daemon-reload
sudo systemctl restart kubelet
kubectl uncordon <worker-node-name>

Worker nodes
upgrade strategies

"All at once": In this strategy, all worker nodes are upgraded at the same time. This approach can be faster than
other strategies, but it also carries the highest risk of causing downtime if something goes wrong during the upgrade

"+1/-1": This strategy involves upgrading one worker node at a time, starting with adding a new node with the updated Kubernetes version, followed by removing an old node with
the old version. This process is repeated until all worker nodes have been upgraded. This strategy minimizes the risk of downtime while still allowing for a relatively quick upgrade.

"-1/+1": This strategy is similar to "+1/-1", but it involves removing an old node first and then adding a new node with the updated Kubernetes version. This strategy carries a slightly higher risk of
downtime because there may be fewer worker nodes available during the upgrade process, which could result in an overload on the remaining nodes and potentially cause them to become not ready

>

>

>

Step 4: Verify Cluster Health

After upgrading all the control plane and worker
nodes, you should verify the health of the cluster.

Check the status of the control plane components
using commands like `kubectl get nodes` and
`kubectl get pods -n kube-system`.

Step 5: Update Kubernetes Objects

Some Kubernetes objects, such as Deployments or
StatefulSets, may need to be updated to take advantage
of new features or changes in the upgraded version

recommended to perform upgrades on a test cluster before
upgrading a production cluster to ensure that the process
goes smoothly and without any issues

 24

The `apt-mark` command in the operating system can be used to label packages
and update only the operating system without changing their version.

My current version is 1.25.3 and we will be upgrading it
to one higher version, ie, 1.26.7

Find the latest 1.26 version in the list.
It should look like 1.26.x-00, where x is the latest patch

Step1: Determine which version to upgrade to

https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/

apt-mark unhold kubeadm && \
apt-get update && apt-get install -y kubeadm=1.26.7-00 && \
apt-mark hold kubeadm

apt-mark unhold kubelet kubectl && \
apt-get update && \
apt-get install -y kubelet=1.27.x-00 && \
apt-get install -y kubectl=1.27.x-00 && \
apt-mark hold kubelet kubectl

D.Upgrade kubelet and kubectl

apt-mark unhold kubelet kubectl
sudo apt-get upgrade -y kubelet=1.26.7-00
sudo apt-get upgrade -y kubectl=1.26.7-00
sudo apt-mark hold kubelet kubectl

How to Upgrade Kubernetes Cluster Using Kubeadm?

"Skip this step if you want to update to
the latest patch in this minor version."

It's important to regularly back up to ensure that your k8s cluster can be easily restored in the event of a failure or data loss. Additionally, it's important to
test your backup and restore processes to ensure that they are working properly and that you can recover from any issues that may arise.

 Backup & Restore Methods

 Refers to the actual data produced and managed by the applications running on your k8s cluster. This could include databases, user-generated content, logs,
and anything else that your applications are producing or manipulating

When designing a backup strategy for a Kubernetes cluster, it's crucial to back up both the application data and the cluster configuration.

Kubernetes manifests: includes all the Kubernetes objects and resources that configure your cluster and applications.
This includes things like deployments, services, configmaps, and etc.These resources are usually defined as code, for
example in YAML or JSON files. Because they are code, a good practice is to store them in a version control system like Git.
This gives you a history of changes and allows you to revert to a previous state if something goes wrong.

etcd data: The cluster state and metadata in Kubernetes are stored in etcd. To
ensure cluster recovery, it's crucial to back up the etcd data. This can be achieved
either by taking periodic snapshots of the etcd database or by implementing a
backup solution specifically designed for etcd, such as etcdctl or Velero.

There are several strategies you can follow to backup this data:

Volume Snapshots: Kubernetes volume snapshots provide a standardized way to create copies of the content of
persistent volumes at a point in time, without creating new volumes.

Database Backups: If you're using a database in your application, it's likely that the database itself has backup
functionality. For example, you can create a dump of a MySQL database or a snapshot of a MongoDB database.

Backup Sidecars: Another approach is to use a sidecar container in your pods specifically for managing
backups. This container would be responsible for regularly creating backups and sending them to a remote location

Application data

 Cluster configuration includes all the Kubernetes objects and resources that configure your cluster and applicationsCluster configuration

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: etcd-backup
spec:
 schedule: "0 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: etcd-backup
 image: quay.io/coreos/etcd:v3.5.0
 command:
 - /bin/sh
 - -c
 - |
 ETCDCTL_API=3 etcdctl snapshot save /backup/k8s/etcd-snapshot.db \
 --endpoints=<ETCD-endpoints> \
 --cacert=/etc/kubernetes/pki/etcd/ca.crt \
 --cert=/etc/kubernetes/pki/etcd/server.crt \
 --key=/etc/kubernetes/pki/etcd/server.key
 volumeMounts:
 - name: etcd-certs
 mountPath: /etc/kubernetes/pki/etcd
 - name: backup
 mountPath: /backup
 volumes:
 - name: etcd-certs
 secret:
 secretName: etcd-certs
 - name: backup
 persistentVolumeClaim:
 claimName: backup-pvc

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: backup-pvc
spec:
 storageClassName: <storage-class>
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

 This manifest sets up a CronJob that runs an etcd backup job every hour, using the etcdctl
command-line tool inside a container to create a snapshot of the etcd database and save it to the specified path. It mounts the etcd certificates and a PersistentVolumeClaim for storing the backup.

When you create a VolumeSnapshot object, it triggers the storage provider to create a snapshot of
the underlying storage volume. The snapshot is represented by the VolumeSnapshotContent object

Volume Snapshot volumes Snapshot
Class

Volume Snapshot
Content

Persistent Volume
Claim

Storage Class

Persistent Volume

Request a
persistent volume

Request a Volume
Snapshot Content

—
—

—
>

<—————>

<—————>

claims Volume
Snapshot Content

claims persistent
Volume

Source

>

>

>

Create persistent
volume

Create volume
Snapshot Content

—
—

—
>

Mounted
on pod

Pod

———>

Physical disk is
associated with

Persistent volume

Requests a disk from
storage provider

Requests a snapshot of
disk from storage provider

A snapshot of Physical
disk is associated with

Volume Snapshot Content

CSI-driver
storage provider

————————>

————————>

———————————

———————————

———————————

———————————

Physical disk
for snapshots

Physical disk—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
>

———

———

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—Cluster must have volume snapshot CRDs, and

snapshot controller deployed on it for this to work

Create a VolumeSnapshot of the
desired PVC

Verify VolumeSnapshotContent
 was created

CSI driver and storage class that support volume snapshots

Ensure that you have the necessary
prerequisites in place

Define a VolumeSnapshot object that
references the PVC you want to snapshot

Check the status of the VolumeSnapshot
to ensure it is created successfully

You can backup Kubernetes resources using etcdctl command-line

To create a VolumeSnapshot in Kubernetes, follow the steps below

 25

You can backup Kubernetes resources using Velero
 Once Velero is installed, you can create a backup by running the following command:

velero backup create <backup-name>

By default, Velero will back up all resources in all namespaces. If you want to back up only certain namespaces
or resources, you can specify them with the --include-namespaces and --include-resources flags, respectively
velero backup create <backup-name> --include-namespaces my-namespace \
--include-resources deployments,pods

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: velero-backup
spec:
 schedule: "0 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: velero
 image: velero/velero:v1.7.0
 command:
 - /velero
 args:
 - backup
 - create
 - my-backup
 volumeMounts:
 - name: cloud-credentials
 mountPath: /credentials
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: cloud-credentials
 key: aws_access_key_id
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: cloud-credentials
 key: aws_secret_access_key
 volumes:
 - name: cloud-credentials
 secret:
 secretName: cloud-credentials

you can also automate the backup process with Velero

BackupController

Kube-apiserver

Etcd

<====>
——>

<———
———————>User resource

velero backup create

Watch

Query

1

2

3
4<———

Velero client makes a call to the k8s
API server to create a Backup object

The BackupController notices the new
Backup object and performs validation.

The BackupController begins the backup
process. It collects the data to back up by
querying the API server for resources

The BackupController makes a call to the object
storage service to upload the backup file.

Object storage
service

Velero

Create custom

velero restore create --from-backup <backup-name>

By default, Velero will restore all resources in the backup to their original namespaces. If you want to restore only certain
namespaces or resources, you can specify them with the --include-namespaces and --include-resources flags, respectively

velero restore create --from-backup <backup-name> --include-namespaces my-namespace \
--include-resources deployments,pods

 To restore a backup, run the following command:

kubectl describe volumesnapshot <snapshot-name> kubectl get crds | grep snapshot.storage.k8s.io

>

——————————————————————

——————————————————————

|
|
|
|
|

|
|
|
|
|

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-hostpath-sc apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot
metadata:
 name: new-snapshot-demo
spec:
 volumeSnapshotClassName: csi-hostpath-sc
 source:
 persistentVolumeClaimName: csi-pvc

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: csi-hostpath-sc
driver: hostpath.csi.k8s.io
deletionPolicy: Delete

PVC
PV

VolumeSnapshotClass

VolumeSnapshotContent——>

When a VolumeSnapshot object is created, the VolumeSnapshotClass provisions a VolumeSnapshotContent to hold
the actual snapshot data.. Deleting the VolumeSnapshot object does not delete the VolumeSnapshotContent object.
If you want to delete the snapshot data, you need to delete the corresponding VolumeSnapshotContent object

The VolumeSnapshotClass defines the snapshotter/provisioner that will be used to take snapshots and parameters like retention policy, etc.
it enables dynamic provisioning of snapshots, just like a StorageClass allows dynamic provisioning of volumes

VolumeSnapshot

 To restore an etcd backup using etcdctl
Ensure that the Kubernetes API server is not active or stopped

etcdctl snapshot restore /backup/k8s/etcd-snapshot.db \
--data-dir=/var/lib/etcd-from-backup \
--initial-cluster= etcd01= kubemaster-1=https://192.168.100.11:2380,etcd02=http://<etcd02-ip>:2380 \
--initial-advertise-peer-urls https://192.168.100.11:2380 \
--initial-cluster-token=<ETCD-initial-cluster-token> \
--name=kubemaster-1

Use the etcdctl to restore the backup change the path of the ETCD data directory to var /var/lib/etcd-from-backup/, you
need to edit the manifest file and update the relevant volume and hostPath specifications

volumes:
- name: etcd-data
 hostPath:
 path: /var/lib/etcd-from-backup/

/etc/kubernetes/manifests/etcd.yaml

1 2 3

sudo mv /etc/kubernetes/manifests/kube-api.yaml another-path

sudo systemctl stop kube-apiserver

Or

To restore a snapshot, create a new PVC based on a VolumeSnapshotContent. This results in
a new PV with data populated from the snapshot

kind: PersistentVolumeClaim
metadata:
 name: csi-pvc-restored
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-hostpath-sc
 dataSource:
 name: new-snapshot-demo
 kind: VolumeSnapshot
 apiGroup: snapshot.storage.k8s.io New PV provisioned from the snapshot data

PVC

Storage Class

VolumeSnapshoet

VolumeSnapshotContent Pv——>

kind: Deployment
metadata:
 name: my-csi-app
spec:
…
 volumes:
 - name: my-csi-volume
 persistentVolumeClaim:
 claimName: csi-pvc-restored

Deployment
———————————————| Create a Pod that mounts the

restored PVC to validate the backup

The dataSource field indicates that this PVC is a clone of the specified snapshot

 Security

Kubernetes uses a combination of secure network channels, authentication and authorization mechanisms, network policies, and container security features to ensure that all
communication within the cluster is authenticated, encrypted, and secure. These mechanisms help to protect the cluster against unauthorized access, data breaches, and other
security threats, and provide a reliable and secure platform for deploying and managing containerized applications.

Secure network channels: Kubernetes uses secure network channels to ensure that all communication within the cluster is encrypted and secure. These channels are established using
Transport Layer Security (TLS) certificates, which provide a secure way to authenticate the identity of different components and encrypt all data that is transmitted between them.

Kube-API
Server ETCD—————————————————><—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

<—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

<—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—

<—
—

—
—

—

————————————

<—
—

—
—

—
—

—
—

—
—

—
—

—
—

———————————

———————————

————————

—————

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

——————————>

kube-proxy.crt
Kube-proxy.key

Container-manager.crt
Container-manager.key

Scheduler.crt
Scheduler.key

Admin.crt
Admin.key

apiserver.crt
apiserver.key

apiserver-etcd-client .crt

apiserver-kubelet-client .crt
Etcdserver.crt
Etcdserver.key

kubelet.crt
kubelet.key

apiserver-kubelet-client.key

apiserver-etcd-client .key

Ca.crt Ca.key CERTIFICATE AUTHORITY (CA)

The cluster's certificate authority (CA) is responsible for issuing and managing certificates used for authentication and encryption within the cluster. the CA is typically implemented as a component within the Kubernetes control
plane, and is responsible for generating and managing the cluster's root certificate and private key. These are used to sign and issue certificates for different components within the cluster, such as nodes, API servers, and users.

All requests and responses between different components in
the cluster are routed through the API server, which ensures
that all communication is authenticated and secure.

These certificates are issued by the Certificate Authority (CA)

arye@kubemaster-1:/etc/kubernetes/pki$ ll
-rw-r--r-- 1 root root 1090 May 18 09:34 apiserver-etcd-client.crt
-rw------- 1 root root 1679 May 18 09:34 apiserver-etcd-client.key
-rw-r--r-- 1 root root 1099 May 18 09:34 apiserver-kubelet-client.crt
-rw------- 1 root root 1675 May 18 09:34 apiserver-kubelet-client.key
-rw-r--r-- 1 root root 1229 May 18 09:34 apiserver.crt
-rw------- 1 root root 1679 May 18 09:34 apiserver.key
-rw-r--r-- 1 root root 1025 May 18 09:34 ca.crt
-rw------- 1 root root 1679 May 18 09:34 ca.key
drwxr-xr-x 2 root root 4096 May 18 09:34 etcd/
-rw-r--r-- 1 root root 1038 May 18 09:34 front-proxy-ca.crt
-rw------- 1 root root 1679 May 18 09:34 front-proxy-ca.key
-rw-r--r-- 1 root root 1058 May 18 09:34 front-proxy-client.crt
-rw------- 1 root root 1675 May 18 09:34 front-proxy-client.key
-rw------- 1 root root 1675 May 18 09:34 sa.key
-rw------- 1 root root 451 May 18 09:34 sa.pub

The Scheduler.crt and Scheduler.key files are not typically found in the /etc/kubernetes/pki directory because the
Kubernetes scheduler component does not require its own certificate and key for secure communication within the cluster.
The communication between the scheduler and the API server is typically secured using the API server's certificate and key

The /etc/kubernetes/pki directory is a directory used by Kubernetes to
store the public key infrastructure (PKI) materials, such as certificates
and keys, that are used to secure communication between the different
components of the Kubernetes cluster.

The kubelet.crt and kubelet.key files are typically located in the /var/lib/kubelet/pki
directory on the node where the kubelet is running

Certificate (public key)
————

*.crt
 *.pem

Private key
————

*.key
 *.key.pem

kubelet-client.crt

kubelet-client.key

To renew all the certificates in a k8s cluster with kubeadm, you can
use the kubeadm certs renew command with the all option

root@kubemaster-1 (/etc/kubernetes):
 kubeadm certs renew all

arye@kubemaster-1:~$ sudo kubeadm certs check-expiration
[check-expiration] Reading configuration from the cluster...
[check-expiration] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -oyaml'
CERTIFICATE EXPIRES RESIDUAL TIME CERTIFICATE AUTHORITY EXTERNALLY MANAGED
admin.conf May 18, 2023 09:34 UTC 341d no
apiserver May 18, 2023 09:34 UTC 341d ca no
apiserver-etcd-client May 18, 2023 09:34 UTC 341d etcd-ca no
apiserver-kubelet-client May 18, 2023 09:34 UTC 341d ca no
controller-manager.conf May 18, 2023 09:34 UTC 341d no
etcd-healthcheck-client May 18, 2023 09:34 UTC 341d etcd-ca no
etcd-peer May 18, 2023 09:34 UTC 341d etcd-ca no
etcd-server May 18, 2023 09:34 UTC 341d etcd-ca no
front-proxy-client May 18, 2023 09:34 UTC 341d front-proxy-ca no
scheduler.conf May 18, 2023 09:34 UTC 341d no

CERTIFICATE AUTHORITY. EXPIRES RESIDUAL TIME EXTERNALLY MANAGED
ca May 15, 2032 09:34 UTC 9y no
etcd-ca May 15, 2032 09:34 UTC 9y no
front-proxy-ca May 15, 2032 09:34 UTC 9y no

you can check the expiration dates of the certificates

arye@kubemaster-1:/etc/kubernetes$ ll
-rw------- 1 root root 5450 May 18 09:34 admin.conf
-rw------- 1 root root 5486 May 18 09:34 controller-manager.conf
-rw------- 1 root root 1886 May 18 09:35 kubelet.conf
drwxr-xr-x 2 root root 4096 May 18 10:30 manifests/
drwxr-xr-x 3 root root 4096 May 18 09:34 pki/
-rw------- 1 root root 5438 May 18 09:34 scheduler.conf

These configuration files are essential for the proper functioning of the various k8s
components. They contain settings such as the API server address, authentication
and authorization information, and other component-specific configurations

/etc/kubernetes/ is a directory that contains Kubernetes configuration
files. usually used for defining settings related to the k8s components

Kube-Scheduler

Kubelet

 26

 In Kubernetes, many of the components use mutual TLS (Transport Layer Security) authentication for secure communication between each other. This method involves each component
having its own certificate (crt) and private key (key) that are used to authenticate and encrypt communication when communicating with other components.

>

This will renew the following certificates:
- etcd server and peer certificates
- API server certificate
- Front proxy client certificate
- Controller manager client certificate
- Scheduler client certificate
Note: kubelet.conf is not included in the list above

After running the command you should restart the control plane Pods

Static Pods are managed by the local kubelet and not by the API Server, thus kubectl cannot be used to delete and
restart them. To restart a static Pod you can temporarily remove its manifest file from /etc/kubernetes/manifests/

Kube-Controller
Manager

Kube-proxy

Kubectl
admin.conf: This file contains the configuration for the Kubernetes cluster
administrator, holding the necessary credentials and cluster information to
interact with the cluster using the kubectl command-line tool

you can use the following command to display the details of a certificate file in a human-readable format:
openssl x509 -in /etc/kubernetes/pki/apiserver.crt -text -noout

This feature is intended to address straightforward scenarios. If you don't have specific requirements regarding
certificate renewal and regularly perform Kubernetes version upgrades (with less than a year between each
upgrade), kubeadm will handle the process to ensure your cluster remains up to date and reasonably secure.

Certificates generated by kubeadm expire after 1 year and will need to be
renewed. kubeadm provides a simple command to renew all certificates

It is advisable to backup your certificates and configuration files before executing the command

/etc/kubernetes/pki/*.* /etc/kubernetes/*.conf ~/.kube/config

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

———

————-

———————-

————-

————- kubeadm can renews all the certificates during control plane upgrade.

 Kube-API

Authentication Authorization Admission control
———————>Internal request

External request

• Static Token file
• Open ID Connect
• X.509 certificates
• Authentication proxy
• Webhook

Authentications plugin

> ————————>

—
—

—
—

—
—

—
—

—
>—

—
—

>—
—

—
>

>

>

Authz

Request

Arye User

Mohsen
Harold

Admin groups

Service-Account

 Verbs

StatefulSet Pods

…

Resources

Services

PvcS Deployments

ConfigMaps

Role
Which resource?

What actions?——

 Who?

——
—————

———

——RoleBinding
Who?

Which Roles?

Role-Based Access Control (RBAC) is common authorization method in Kubernetes

—-—> —-—>

 list of some built-in admission control plugins available in Kubernetes
LimitRanger (enforces resource limits on pods and containers)

MutatingAdmissionWebhook (calls a webhook to mutate the object)

NamespaceExists (rejects requests in namespaces that don't exist)

Priority (enforces pod priority based on PriorityClass)
ResourceQuota (enforces resource quotas for a namespace)

RuntimeClass (enforces the use of a specific runtime class for pods)

 Authorization can prevent unauthorized access to resources in the cluster, it cannot prevent the creation or modification of resources that do not comply with the cluster's policies.
Admission control helps ensure that only valid and compliant resources are created or updated in the cluster, which can prevent misconfigurations, security vulnerabilities, and other issues

etcd———-—>->———————>

Kubelet k8s objects

Pod Svc

>Kubectl

LoadBalancer

Curl

if one authorization plugin fails to authorize the request, API server
try another plugin until it finds one that can authorize the request

>

When a client (such as kubectl or a custom application) sends an API request to Kubernetes, the request goes through several steps before it is processed and a response is sent back to the client

Authentication: Kubernetes uses authentication mechanisms to verify the identity of users and components trying to access the cluster. This ensures that only authorized users and components can access the
cluster.

Authorization: Kubernetes uses authorization mechanisms to determine what actions a user or component can perform within the cluster. This ensures that users and
components have access only to the resources they are authorized to access.

Admission control: Kubernetes uses a Admission control mechanism for enforcing rules and policies on k8s resources before they are created or updated in the cluster. This can include validating the structure
and content of resource manifests, applying default values, and enforcing constraints on resource usage. There are two types of admission control plugins:

list get

create

delete

update

watch

patch

Dev NameSpace

SecurityContextDeny (denies pods with certain security context settings)

PodPreset (injects configuration data into pods based on pod presets)
PodTolerationRestriction (enforces restrictions on tolerations for pods)

SecurityContextDeny (denies pods with certain security context settings)

you can also use Gatekeeper, It allows you to define and enforce custom
policies that restrict the creation and modification of resources in the cluster

ValidatingAdmissionWebhook (calls a webhook to validate the object)

 Authentication & Authorization

Service Account authentication
Service Account authentication is a method that uses Kubernetes Service Accounts
to authenticate clients. Each Service Account in the cluster has its own token that is
used to authenticate clients. This method is commonly used when a cluster has a large
number of clients or when automated processes need to access the Kubernetes API

X.509 client certificates authentication
X.509 client certificates authentication is a method that uses digital certificates to authenticate
clients. Each client in the cluster has its own certificate and private key that are used to authenticate
and encrypt communication when communicating with other components. This method is commonly
used when a cluster has a small number of clients or when strong authentication is required

Webhook authentication
Webhook authentication is a method that uses an external HTTP service to authenticate clients. This method is commonly used when a cluster needs to integrate with acustom authentication
system. The external HTTP service receives authentication requests from the Kubernetes API server and returns a response indicating whether the client is authenticated or not

The most significant authentication methods in k8s
> processes SA Credential

User x509 Credential

Authorization
an authenticated user can execute

What action on which resources

2

Authentication
Who are you?

User User

1

UserCredential

Permission

Role-Based Access Control (RBAC): RBAC is a security mechanism in Kubernetes that allows you to control access to resources based on the user's role and permissions. in RBAC, you define roles and cluster roles
that specify a set of permissions, such as read, write, or delete, for a particular set of resources. You then create role bindings and cluster role bindings that associate roles and cluster roles with users, groups, or service accounts.

—
—

—
—

—
—

—
—

>
K get - - raw /api/v1/namespaces/kube-system/pods | jq .

<—
—

—
—

—
—

—
—

—
—

-

|
|

Credential

>

>

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

>
list

get

create

delete

update

watch

 Verbs

StatefulSet

Pods

…

 Resources

Services

PvcS

Deployments

ConfigMaps

patch

Role
Which resources?

What actions?

Who?

Subject

RoleBinding
Who?

 Which Roles or ClusterRoles?

—————

dev NameSpace

Webapp NameSpace

Team-A NameSpace

——

——————————————————————

——————

——————

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: pod-list-permission
 namespace: dev
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: pod-list-permission-binding
 namespace: dev
subjects:
- kind: User
 name: john
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: pod-list-permission
 apiGroup: rbac.authorization.k8s.io

>
|
|
|
|
|
|
|
|
|
|
|

>

|
|
|
|
|
|
|

————————————————

Arye

User

Mohsen
Harold

Admin groups

Service-Account

—————

:ClusterRoleBinding
Who?

Which Cluster Roles?

 Verbs

StatefulSet Pods

…

Resources

Services

PvcS Deployments

ConfigMaps
——

list get

create

delete

watch

patch

ClusterRole
Which resources?

What actions?

update
Verbs define the types of actions that a user or
service account can perform on a specific resource

. Role is a set of permissions that define what actions
are allowed on specific resources within a namespace.

RoleBinding is a mechanism for binding a role to a ServiceAccount,a user or
group of users within a namespace. Role bindings are used to grant specific
permissions to users or groups of users by assigning them to a particular role

ClusterRoles: A ClusterRole is similar to a Role, but it applies to the entire cluster
instead of a single namespace. ClusterRoles can be used to grant permissions for
cluster-scoped resources (e.g. Nodes) or for resources in all namespaces.

ClusterRoleBinding is
cluster-scoped and apply
 to all namespaces

{
status: Failure
code": 401
}

{
status: Failure
code": 403
}

Roles and ClusterRoles can
be either custom or built-in

Built-in Roles and ClusterRoles are predefined by k8s. These built-in roles are
designed to provide a set of default permissions for managing Kubernetes resources

Custom Roles and ClusterRoles are created by users to define their own set of
permissions for managing Kubernetes resources

>

>K get clusterrole

ClusterAdmin: This role is intended to be used by administrators who need full access to all resources
in the cluster. It grants permissions to perform any action on any resource in any namespace.

system:controller:*, system:node:*: These ClusterRoles provide permissions for k8s controllers and
nodes to manage resources in the cluster

admin: This ClusterRole provides full access to manage resources in a specific namespace, including
the ability to create, update, and delete resources

>

>

>

————some built-in ClusterRole—————————
 kubectl describe clusterrole cluster-admin
Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------------- --------------------- -----
 . [] [] [*]
 [*] [] [*]

|
|
|
|
|
|
|
|
|
|

The 'system:node' ClusterRole is used to define the set of permissions for nodes in the cluster. This ClusterRole is typically used to grant
permissions to the kubelet, to perform actions on various resources related to nodes, including nodes themselves, pods, and service accounts

Who can access? Authentication
What can they do? Authorization

Validating admission plugins: These plugins validate the request object without modifying it. They can reject
the request if it doesn't meet the required criteria.

Mutating admission plugins: These plugins can modify the request object, as well as validate it. They are
executed before the validating admission plugins

 27

 Service Account
Service accounts in Kubernetes are non-human accounts that provide a unique identity for system components and application pods. These accounts are namespace-specific objects managed
within the Kubernetes API server. By default, each Kubernetes namespace includes a service account called "default" which has no special roles or privileges assigned to it. In earlier versions of
Kubernetes prior to 1.24, when a service account was created, an associated token would be automatically generated and mounted within the pod's file system. However, from Kubernetes 1.24
onwards, the automatic token generation has been discontinued, and tokens must be acquired through the TokenRequest API or by creating a Secret API object, allowing the token controller to
populate it with a service account token.

automatically create a default service account apiVersion: v1
kind: ServiceAccount
metadata:
 name: default
 namespace: < namespace_name >

——————————————————————————————>

Every kubernetes namespace has a default service account named default once being created

kubectl create namespace <namespace_name>
 namespace:dev
 Service Account:default

Pod

monitoring-agent-SA

serviceAccountName:
 monitoring-agent-SA

>Pod
serviceAccountName:
 -

>

If a pod is created without specifying a service account, it will use the default ServiceAccount, default Service Account has limited permissions,
but If you need to grant your pod more permissions, you can create a custom Service Account with the necessary roles and assign it to the pod.

 Creating and Using a Service Account in a Kubernetes Pod.

kubectl create serviceaccount monitoring-agent-SA Create a service account1

Secret API object

apiVersion: v1
kind: Secret
metadata:
 name: monitoring-agent-SA-token
 annotations:
 kubernetes.io/service-account.name: monitoring-agent-SA
type: kubernetes.io/service-account-token

When you create a Secret with the annotation kubernetes.io/service-account.name and specify a ServiceAccount name, the token
controller in k8s will automatically populate the Secret with a service account token associated with the referenced ServiceAccount.

Sara
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: pod-list-permission
 namespace: default
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: pod-list-permission-binding
 namespace: default
subjects:
- kind: ServiceAccount
 name: sara
 namespace: default
roleRef:
 kind: Role
 name: pod-list-permission
 apiGroup: rbac.authorization.k8s.io

————————————————————————
—

kubectl create role pod-list-permission --verb=get,list,watch --resource=pods --namespace=default

kubectl create rolebinding pod-list-permission-binding --role=pod-list-permission --user=sara --namespace=default

this command creates a role binding in the default namespace that binds the pod-list-permission role to the user sara

Service-Accountkubectl create serviceaccount sara
 Who?

Subject

Arye User
Mohsen

Harold

Admin groups

Service-Account

Using a Service Account to Access a Kubernetes Cluster with kubectl

You can retrieve the Service Account token or recreate it by running the following commands:
Kubectl -n default create token sara
eyJhbGciOiJSUzI1NiIsIm…Lz9APOb2rsWHr9HWA

feature
sRole

To add the user sara to this .kube/config file, you would need to add the following code configuration
under the users section - name: sara

 user:
 token: eyJhbGciOiJSUzI1NiIsIm…Lz9APOb2rsWHr9HWA

After adding this configuration, you would then need to create a new context that uses the sara user
and the k8s-cluster-1 cluster - context:

 cluster: k8s-cluster-1
 user: sara
 name: sara-k8s-cluster-1

Finally, set the current-context field to the newly created context name
current-context: sara-k8s-cluster-1

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: LS0tLS1CRUdJTiBD…RVURS0tLS0tCg==
 server: https://127.0.0.1:42995
 name: k8s-cluster-1
contexts:
- context:
 cluster: k8s-cluster-1
 user: sara
 name: sara-k8s-cluster-1
- context:
 cluster: k8s-cluster-1
 user: arye
 name: arye@k8s-cluster-1
current-context: sara-k8s-cluster-1
kind: Config
preferences: {}
users:
- name: arye
 user:
 client-certificate-data: LS0tLS1CRUdJTiBDRQUR…S0tLS0tCg==
 client-key-data: LS0tLS1CRUdJTiBd0NibHFxS0t…LS0tCg==
- name: sara
 user:
 token: eyJhbGciOiJSUzI1NiIsIm…Lz9APOb2rsWHr9HWA

.kube/config file

 28

in Kubernetes v1.24 and earlier, when a Service Account is created, a token secret is automatically generated and stored in the same namespace. This token secret is used for authentication and authorization
purposes, However, in Kubernetes v1.25 and later, this automatic token creation has been removed. Instead, there are alternative methods for token creation and management. Here are some options:

so you don't need to manually generate or provide the token for the Secret.The token controller takes care of generating and populating the token for you

TokenRequest is an API resource in k8s that allows you to request a token for a specific Service Account. It offers a way to dynamically generate short-lived tokens for authentication and authorization
purposes. The TokenRequest object has several important fields, with the audience field being one of them. The `audience` field specifies the intended recipient(s) or target audience for the requested token,TokenRequest

apiVersion: authentication.k8s.io/v1
kind: TokenRequest
metadata:
 name: monitoring-agent-SA-token
spec:
 audiences:
 - rbac.authorization.k8s.io
 serviceAccountName: monitoring-agent-SA

rbac.authorization.k8s.io: For Role and ClusterRole operations

storage.k8s.io: For Storage operations

metrics.k8s.io: For Metrics API access

authentication.k8s.io: This specifies use by authentication methods and operators like kubelet

api: This specifies that the token is intended for use against the Kubernetes API server. API access given to service accounts is enforced by this audience

defining the authorized users or services for token usage. Here are some examples of audiences that can be specified in the audience field

 Grant permissions to the ServiceAccount

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: monitoring-agent-role
rules:
- apiGroups: [""]
 resources: ["pods", "nodes"]
 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: monitoring-agent-role-binding
subjects:
- kind: ServiceAccount
 name: monitoring-agent-SA
roleRef:
 kind: ClusterRole
 name: monitoring-agent-role
 apiGroup: rbac.authorization.k8s.io

Create a Cluster Role that grants the necessary permissions for SA and Create a Role Binding that associates the Service Account with the Cluster Role

kubectl auth can-i --list --as=system:serviceaccount:default:monitoring-agent-SA
kubectl auth can-i --list --as=system:serviceaccount:<namespace>:<serviceaccount>

To check the permissions of a service account in Kubernetes, execute the following command to list all the available permissions granted to the
monitoring-agent-SA Service Account in the default namespace.

2

The --list flag is used to list all the actions and resources that the service account has access to, and the --as flag is used to specify the service account to check
the permissions for.

Code creates a ClusterRole that grants permissions to retrieve and list information about pods and nodes in the k8s cluster using the "get", "list", and "watch" verbs

apiVersion: v1
kind: Pod
metadata:
 name: monitoring-agent
spec:
 serviceAccountName: monitoring-agent-SA
 containers:
 - name: monitoring-agent
 image: monitoring-agent-image
 args: ["--kubeconfig=/var/run/secrets/kubernetes.io/serviceaccount/token"]
 volumeMounts:
 - name: sa-token
 mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 readOnly: true
 volumes:
 - name: sa-token
 secret:
 secretName: monitoring-agent-SA-token-xxxxx

 Mount the service account token into a pod3

When you specify the serviceAccountName field in the Pod spec, Kubernetes mounts the secret containing the Service Account token as a volume in the Pod.
The volume is mounted at /var/run/secrets/kubernetes.io/serviceaccount, and the Service Account token is stored in the token file inside this volume

Pod
Service Account

monitoring-agent-SA serviceAccountName:
 monitoring-agent-SA

ClusterRole
Which resources:

Pods,nodes
What action:
get,list,watch

————————>Mount—————>Bind

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

 Create & Grant permissions to the service account1
Who? RoleBinding Which Roles?

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

 Retrieve the Service Account token2

 Set the token as a credential in kubectl3
 Verbs

Pods

…

 Resources

Role
Which resource?

What actions?

list
watch

get

This configuration sets the authentication method for the user sara to use a bearer token (token field)
instead of the client certificate and client key used by the arye user

The "rules" section in a role specifies the permissions granted by the role. The "rules" section
 is an array of rules, where each rule specifies the resources and operations that are allowed

The "subjects" section specifies the user or group of users to which the role should be bound.
A subject can be a user, a group, or a service account.

…
subjects:
- kind: User
 name: mohsen
 apiGroup: rbac.authorization.k8s.io
- kind: User
 name: arye
 apiGroup: rbac.authorization.k8s.io
- kind: Group
 name: developers
 apiGroup: rbac.authorization.k8s.io
…

How to bind a role to multiple users?

you can bind a role to multiple users by
creating a role binding that specifies
multiple users in the "subjects" section

You can also specify multiple rules in the
"rules" section of a role

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: pod-viewer
 namespace: my-namespace
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list"]
- apiGroups: [""]
 resources: ["services"]
 verbs: ["get"]

How to specify multiple rules in a Role?

 Using Service Accounts for authentication can be more secure than using user accounts
 because Service Accounts are automatically created and managed by Kubernetes

 API Groups
In k8s, API groups are a way of organizing related resources and operations together. This allows for easier discovery and usage, and also helps to avoid naming conflicts between
different resources. When k8s was first introduced, all the resources like Pod, Service, ReplicationController, etc., were all part of a single group, the "core" group, and were accessed
at the path /api/v1.As k8s evolved and more resources were added, it became clear that this single group was not scalable. So, the concept of API groups was introduced

 New resources are accessed at the path /apis/{group}/{version}.For example, to access the Deployment resource, which is part of the apps group, you would use the path /apis/apps/v1/deployments.

Kubernetes uses a versioning scheme to facilitate the evolution of its API. There are three types of versioning in Kubernetes:
Alpha: This is the first stage of the development of a new API.
Alpha APIs may be unstable, change significantly after the initial
release, and may not even be enabled in your clusters.

Beta: This is the second stage. Beta APIs are well-tested and are
enabled by default in your clusters. However, they may still undergo
changes, such as in the form of bug fixes or feature enhancements.

Stable: This is the final stage. Stable APIs appear in released
software for many subsequent versions

The version of an API group is represented by vXalphaX (e.g., v1alpha1), vXbetaX
(e.g., v2beta2), and vX (e.g., v1) for alpha, beta, and stable versions, respectively.

You can list all available API groups and versions in your cluster by running kubectl api-versions

Kubernetes API groups are divided into two categories

apps: This group contains resources related to running
applications on Kubernetes. It includes Deployment,
ReplicaSet, StatefulSet, and DaemonSet.

batch: This group includes resources
for batch processing and job-like
tasks. It includes Job and CronJob.

rbac.authorization.k8s.io: This group contains the Role,
ClusterRole, RoleBinding, and ClusterRoleBinding resources
for handling role-based access control (RBAC) in Kubernetes.

networking.k8s.io: This group contains
resources related to networking in k8s,
such as NetworkPolicy and Ingress.

storage.k8s.io: This group contains resources
related to storage, such as StorageClass,
VolumeAttachment, and the CSINode driver

> > > > >

. . .

In addition to these API groups, k8s also provides several non-resource endpoints that are not part
of any specific API group. These endpoints provide access to information and functionality that are
not associated with any specific resource, such as the /healthz, /metrics, and /logs endpoints

 KUBECONFIG and KUBECONFIG file

The KUBECONFIG environment variable is used to specify the path to the Kubernetes configuration file, which contains information about the cluster, user, and context used by kubectl and other
Kubernetes command-line tools. The KUBECONFIG file can contain multiple contexts, each representing a different cluster and namespace. The KUBECONFIG file is typically stored in the user's
home directory at the path ~/.kube/config on Unix-based systems
kubectl --kubeconfig=/path/to/my-kubeconfig/my-kubeconfig.yaml get pods

This command uses the specified KUBECONFIG file instead of the default ~/.kube/config file

apiVersion: v1
Kind: Config
Clusters:
- name: GKE
 cluster:
 certificate-authority: ca.cert
 servrer: https://k8s-endpoint:6443
contexts:
- name: Arye@GKE
 context:
 cluster: GKE
 user: Arye
 namespace: dev
users:
- name: Arye
 user:
 client-certificate: arye.crt
 client-key: arye.key

current-context: Arye@GKE

Contexts section defines the mapping between the Kubernetes cluster(s) and the users who
can access them. A context includes the cluster and user information, as well as a reference
to a default namespace and a name for the context

Kubeconfig

Users

Clusters

Which users?

Which clusters?

Contexts
——————>

——————>

Current-context

The default namespace to use for this context.

|
|
|
|
|
|
|
|
|
|
|

———

>

 29

In Kubernetes, resources are divided into two categories based on their scope: Namespaced and Cluster-scoped

 Cluster Scope in Kubernetes

Namespaced resources: These resources exist and operate within a namespace.
They can have different configurations and states in different namespaces

Cluster-scoped resources: These resources exist and operate across
the entire cluster. They are not confined to any particular namespace

Replicaset

PVC

ServicesPods JobsDeployment

Rolebinding configmaps Role

 kubectl api-resources —namespace=true

kubectl api-resources
NAME. SHORTNAMES. APIVERSION. NAMESPACED. KIND
…
endpoint no v1 true Endpoints
Pods po v1 false Pod
Service svc v1 true Service
deployment deploy apps/v1 true Deployment
Ingresses ing extensions/v1beta1 true Ingress
…

nodes ClusterrolesPV

Clusterrolebinding Namespace

 kubectl api-resources —namespace=false

EKS Arvan GKE

Arye SarahMohsen

>

Server Address

kubectl config set-cluster GKE --server=https://k8s-endpoint:6443 --certificate-authority=ca.crt --embed-certs --kubeconfig new.kubeconfig

kubectl config set-credentials Arye --token= eyJhbGciOiJSUzI1NiIsIm…Lz9APOb2rsWHr9HWA --kubeconfig new.kubeconfig

kubectl config set-context Arye@GKE --cluster=GKE --user=Arye namespace=dev --kubeconfig new.kubeconfig

kubectl config set-credentials Arye --client-key=/path/to/arye.key --client-certificate=/path/to/arye.crt --embed-certs --kubeconfig new.kubeconfig

<——>

Cluster nameSet a cluster entry in kubeconfig

Set the cluster details Set the user credentials Set the context

Embeds the certificate data directly in the kubeconfig instead of linking to a file kubeconfig file that will be created with this new entry.K8s CA certificate for TLS verification

new.kubeconfig

To create a kubeconfig file using kubectl, you can follow these steps:

User name user certificate fileuser key file

context name default namespace

export KUBECONFIG=new.kubeconfig

If you use a token

If you use a client certificate

you can specify a different kubeconfig file by setting the KUBECONFIG
environment variable.

kubectl config use-context Arye@GKE

Use the context

If embed-certs=false

Core API Group
The core API group, also referred to as the "v1" group, contains the essential resources that are fundamental to
the functioning of a Kubernetes cluster. It includes resources such as Pods, Services, Namespaces, ConfigMaps,
Secrets, and more. The core API group is accessed using the /api/v1 endpoint

rc nodesPVCservicesPods endpoint PVsecrets namespaces events binding configmaps

Named API Groups
Named API groups are additional API groups introduced to extend the functionality of Kubernetes beyond the
core resources. Each named API group focuses on specific features or functionalities and manages specialized
resources related to those features. The Named API group is accessed using the /apis endpoint

Kubernetes APIs

/batch

/V1/V1/V1/V1/V1/V1/V1

/metrics /healthz /logs …

Named groupsCore groups

Version

API groups

<———

<—————

->

->

->

—>

|
|
|
|
|
|
|
|

/api /apis

/rbac.authorization.k8s.io /apps/networking.k8s.io /storage.k8s.io …

list get

watch create

delete patch

updateVerbs
…

 Resources

/Statefulset

/Replicaset

/Deployments

openssl genrsa -out mojtaba.key 2048
apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata:
 name: mojtaba
spec:
 groups:
 - system:authenticated
 request: LS0tLS1CRUdJTjkKNUlEdC9BWT………0KLS0tLS1FTkQ…
gQ0VSVElGSUNBVEUgUkVRVUVTVC0tLS0tCg==
 signerName: kubernetes.io/kube-apiserver-client
 usages:
 - client auth

cat mojtaba.csr | base64 -w 0

 kuectl apply -f csr-mojtaba.yml

k get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
mojtaba 33m kubernetes.io/kube-apiserver-client kubernetes-admin Pending

k describe csr mojtaba
Name: mojtaba
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"certificates.k8s.io/
v1","kind":"CertificateSigningRequest","metadata":{"annotations":{},"name":"mojtaba"},"spec":{"groups":
["system:authenticated"],"request":"LS0tLS1CRUdJTjkKNUlEdC9BWT0KLS0tLS1FTkQgQ0VSVElGSUNBVEUgUkVRVU
VTVC0tLS0tCg==","signerName":"kubernetes.io/kube-apiserver-client","usages":["client auth"]}}

CreationTimestamp: Sat, 11 Jun 2022 17:51:33 +0000
Requesting User: kubernetes-admin
Signer: kubernetes.io/kube-apiserver-client
Status: Pending
Subject:
 Common Name: mojtaba
 Serial Number:
 Organization: StarkWare
 Organizational Unit: blockchain
 Country: IL
 Locality: haifa
 Province: haifa
Events: <none>

k certificate approve mojtaba

kubectl explain CertificateSigningRequest.spec

k get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
mojtaba 39m kubernetes.io/kube-apiserver-client kubernetes-admin Approved,Issued

1 2

3 4

openssl req -new -key mojtaba.key -subj “/CN=mojtaba” -out mojtaba.csr

How to create a new admin or developer user account for accessing to a k8s cluster with X.509 ?

Creating a new private key & a csr file by new user Creating a new CSR yaml file and Sign the CSR using the Kubernetes CA

->->->-->->->-Creating a new
private key & CSR

->->-
>-

->->->-Creating a CSR
YAML file

Review by Admin
& approve it

kubectl get csr mojtaba -o jsonpath='{.status.certificate}' | base64 -d >mojtaba.crt

Export the issued certificate from the CertificateSigningRequest.

Creating a
kubeconfig file

apiVersion: v1
kind: Config

current-context: mojtaba@cka

clusters:
 - name: cka
 cluster:
 server: https://kubemaster-1:6443
 certificate-authority: ca.crt

users:
 - name: mojtaba
 user:
 client-certificate: mojtaba.crt
 client-key: mojtaba.key

contexts:
 - name: mojtaba@cka
 context:
 cluster: cka
 user: mojtaba
 namespace: dev

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/#normal-user

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: developer
 namespace: dev
rules:
 - apiGroups: [“”]
 resources: [“pods”]
 verbs: [“list” , “get” , “create” , “update” , “delete”]

 - apiGroups: [“”]
 resources: [“configMap”]
 verbs: [“create”]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: mojtaba-developer
 namespace: dev
roleRef:
 apiGroup: "rbac.authorization.k8s.io"
 kind: "Role"
 name: "developer"
subjects:
 - apiGroup: "rbac.authorization.k8s.io"
 kind: "User"
 name: "mojtaba"

6

->->->-

->->->- Creating
RoleBinding

->->->-
Creating

ClusterRole
Creating

ClusterRoleBinding

Generate a private key for the user using OpenSSL. The private key is used as
part of the user's credentials to authenticate with the Kubernetes API server

Create a CSR for the user using the private key

The CSR includes the user's identifying information and the public key associated with the private key

Create a CertificateSigningRequest object in Kubernetes that includes the user's CSR and submit
the CSR to the Kubernetes cluster

submit the CSR to the Kubernetes cluster and approve it

Once the CSR is submitted, it needs to be approved by a cluster administrator.

This command notifies the Kubernetes CA that the CSR has been approved and requests a
signed certificate for the user. The signed certificate is then stored in the status.certificate
field of the CertificateSigningRequest object

|
|
|
|
|
|
|
|

>

—

you retrieve the signed certificate for the user

——

5 Create a kubeconfig File for the User
Create a kubeconfig file for the user that includes the cluster details, user credentials, and context. The
certificate-authority-data field contains the base64-encoded CA certificate for the Kubernetes cluster.

Set Up Role-Based Access Control (RBAC) for the User
In this final step, you create a role and role binding to grant the user permissions in the Kubernetes cluster

The reason for having two separate rules in the Role definition is that the two resources, "pods" and "configMap", have different permissions requirements

 30

The signerName specifies the Kubernetes CA that will sign the certificate.
The usages field specifies that the certificate will be used for client authentication.

<——

csr-mojtaba.yml

request: $(cat user-name.csr | base64 -w 0)

Or

certificate-authority-data client-certificate-data client-key-data

cat mojtaba.csr | base64 -w 0cat mojtaba.csr | base64 -w 0cat /etc/kubernetes/pki/ca.crt | base64 -w 0

To become independent from external files in the configuration, you can use the data field directly within the configuration file

apiVersion: v1
kind: Config

current-context: mojtaba@cka

clusters:
 - name: cka
 cluster:
 server: https://kubemaster-1:6443
 certificate-authority-data: <base64-encoded CA certificate data>

users:
 - name: mojtaba
 user:
 client-certificate-data: <base64-encoded client certificate data>
 client-key-data: <base64-encoded client key data>

contexts:
 - name: mojtaba@cka
 context:
 cluster: cka
 user: mojtaba
 namespace: dev

—- -—|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

kubectl config set-cluster cka --server=https://kubemaster-1:6443 --certificate-authority=ca.crt --embed-certs --kubeconfig devuser.kubeconfig

kubectl config set-credentials mojtaba --client-key=/path/to/mojtaba.key --client-certificate=/path/to/mojtaba.crt --embed-certs --kubeconfig devuser.kubeconfig

kubectl config set-context mojtaba@cka --cluster=cka --user=mojtaba namespace=dev --kubeconfig devuser.kubeconfig

5.1 If you don't want to create a kubeconfig manually,
you can create a kubeconfig using kubectl ===

|
|
|
|
|
|
|
|
|

——

——
kubectl config use-context mojtaba@cka

Creating Role

Resources
Pod, services

Verb(s)
Get, List

>

Kubernetes RBAC Objects

Groups
a collection of Users

Service Account
 Namespaced Kubernetes managed user that
is intended to be used by in cluster processes

Pod
Compute unit that can interact

with the Kubernetes API server

User
A user that authenticates against

the kubernetes API server

Rule

can be part of 1..x

>

>

Role Binding
Attached rules from one Role or

Cluster Role to User, Groups or SAs

Cluster Role Binding
attaches rule from one Cluster
Role to Users,Groups or SAs

(Aggregated)Cluster Role
a collection of cluster global

 rules

Role
a collection of namespace

scoped rules

>>

> >>

>

collects rules from collects rules from

Contains

uses credentials of assigns rules to assigns rules to

Auditing in Kubernetes refers to the process of recording and analyzing activities that occur on the cluster. This can include actions taken by users, API requests, and
changes to objects in the cluster. Auditing provides visibility into the behavior of the cluster and can be used for security, compliance, and troubleshooting purposes

Admin

Dev

Dev

Audit log
===

===
===

=

>

—
—

—
—

>————>

—
—

>

——————>

<—
—

—
—

—
—

—

<—
—

—
—

—
—

—

<—
—

—
—

—
—

ALL ROADS LEAD TO …
THE APISERVER

All requests to view or modify the state of
the cluster pass through the apiserver

This central position makes the apiserver the
appropriate source for auditing data

Audit levels in Kubernetes define the verbosity of the recorded events. There are four audit levels:

Request: Log event metadata and request content (excluding the response).

None: Do not log any events.
Metadata: Log request metadata only (e.g., who, what, where, when).

RequestResponse: Log event metadata, request content, and response content.

Audit policy is a configuration that defines the rules for what events should be recorded and at what level

>

>

>

>

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
- level: Metadata
 resources:
 - group: ""
 resources: ["pods", "services"]
- level: Request
 users: ["system:serviceaccount:my-namespace:my-serviceaccount"]
 resources:
 - group: ""
 resources: ["configmaps"]

This policy logs metadata for all pod and service operations and logs request
content for configmap operations performed by the specified service account

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
 - level: Request
 resources:
 - group: ""
 resources: ["pods", "services"]
 verbs: ["create", "update", "delete"]
 - level: Metadata
 resources:
 - group: ""
 resources: ["namespaces", "configmaps", "secrets"]
 verbs: ["create", "update", "delete"]
 - level: None
 resources:
 - group: ""
 resources: ["persistentvolumes", "persistentvolumeclaims"]

This policy will log request-level for pod and service creation, update, and deletion, also will log
metadata-level events for namespace, configmap, and secret creation, update, and deletion. It
will not log events related to persistent volume and persistent volume claim resources.

Audit log events are
emitted as JSON object

Memory consumption depends
on the audit logging policy

|
Audit logging increases the memory

consumption of the API Server

audit-policy-file: sets the policy file to use
audit-log-*: setting configure log files
audit-webhook-*: settings configure log network endpoints

The apiserver has some audit logging options:

apiVersion: audit.k8s.io/v1
kind: Policy
rules:

- level: None
 verbs: ["get", "watch", "list"]

- level: None
 resources:
 - group: "" # core
 resources: ["events"]

- level: None
 users:
 - "system:kube-scheduler"
 - "system:kube-proxy"
 - "system:apiserver"
 - "system:kube-controller-manager"
 - "system:serviceaccount:gatekeeper-
system:gatekeeper-admin"

- level: None
 userGroups: ["system:nodes"]

- level: RequestResponse

{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "level": "RequestResponse",
 "timestamp": "2022-06-01T14:23:00Z",
 "auditID": "1a2b3c4d-1234-5678-90ab-cdef01234567",
 "stage": "ResponseComplete",
 "requestURI": "/api/v1/namespaces/default/pods",
 "verb": "POST",
 "user": {
 "username": "john.doe",
 "groups": ["developers"]
 },
 "sourceIPs": ["10.0.0.1"],
 "objectRef": {
 "apiVersion": "v1",
 "kind": "Pod",
 "namespace": "default",
 "name": "my-pod"
 },
 "responseStatus": {
 "metadata": {},
 "code": 201
 },
 "requestReceivedTimestamp": "2022-06-01T14:22:59.999Z",
 "stageTimestamp": "2022-06-01T14:23:00.001Z",
 "annotations": {
 "kubectl.kubernetes.io/last-applied-configuration": "{...}"
 }
}

This policy has five rules, each specifying
a different level of audit logging:

specifies that all "get", "watch", and "list"
operations should not be audited at all.

specifies that events should not be
audited at all.

specifies these certain system
users should not be audited

specifies that all users belonging to the
"system:nodes" group should not be audited.

specifies that all other operations, including
requests and responses, should be audited
at the RequestResponse levels

———>

———>

———>

———>

———>

To enable audit logging in the Kubernetes API server, you need to configure the API server
to use a specific audit policy and write audit logs to a file or other destination

 Edit the API server configuration file, Add the following
flags to the spec.containers.command section
- --audit-policy-file=/etc/kubernetes/audit/policy.yaml
- --audit-log-path= /var/log/kubernetes/audit/audit.log
- --audit-log-format=json
- --audit-log-maxsize=500
- --audit-log-maxbackup=3

/etc/kubernetes/audit/policy.yaml

Add a volume and volumeMount to the spec section
volumes:
- name: audit-config
 hostPath:
 path: /etc/kubernetes/audit/policy.yaml
 type: File
- name: audit-logs
 hostPath:
 path: /var/log/kubernetes/audit
 type: DirectoryOrCreate

 Add the corresponding volume mounts to the
spec.containers.volumeMounts section
- name: audit-config
 mountPath: /etc/kubernetes/audit/policy.yaml
 readOnly: true
 subPath: audit-policy.yaml
- name: audit-logs
 mountPath: /var/log/kubernetes/audit tail -f /var/log/kubernetes/audit/audit.log | jq

After the API server restarts and applies the policy.yaml
file, you can tail the logs to see the events being recorded

RuntimeClass
RuntimeClass is a Kubernetes feature that allows users to specify different runtime configurations for their containers. One common use case for RuntimeClass is to
run containers with different levels of isolation.For example, a user may want to run some containers with a higher level of isolation, while others may not require the
same level of security. By defining multiple RuntimeClasses with different runtime configurations, the user can choose the appropriate class for each container.

gVisor is a user-space kernel that provides isolation for containers by intercepting and handling system calls. It can be used with k8s to
provide an extra layer of security for your pods. To restrict syscalls for a pod running in k8s, you can use gVisor as the runtime for that pod.

gVisor is an sandboxed container runtime developed by Google. It
provides an additional layer of isolation between containerized
applications and the host kernel using a technique called "sandboxing"

How to use gVisor

 First, you need to install gVisor on your Kubernetes nodes. You can
do this using the runsc binary, which is the gVisor runtime. Download
and install the runsc binary on each node:
wget https://storage.googleapis.com/gvisor/releases/nightly/latest/runsc
chmod +x runsc
sudo mv runsc /usr/local/bin

 To use gVisor with Kubernetes, you need to configure the container runtime
(e.g., containerd) to use gVisor. Create a configuration file for containerd:

Install
gVisor

Configure
containerd

Create a
RuntimeClas

s resource

Use the gVisor
RuntimeClass

in your pod

sudo mkdir -p /etc/containerd
sudo nano /etc/containerd/config.toml

```toml
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runsc]
  runtime_type = "io.containerd.runsc.v1"
  [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runsc.options]
    BinaryName = "/usr/local/bin/runsc"
    Root = ""
    LogLevel = "info"
    Debug = false
    DebugLogFile = ""
    NoSandbox = false
```

sudo systemctl restart containerd

Add this configuration to
the `config.toml` file:

 create a `RuntimeClass` resource in your Kubernetes cluster that specifies gVisor
as the runtime. Save the following YAML file as `gvisor-runtime-class.yaml`:

> >

Restart containerd to apply the new configuration:

>

apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: gvisor
handler: runsc

 To use gVisor for a specific pod, set the `runtimeClassName` field to `gvisor`
in the pod spec. Here's an example of a simple Nginx pod that uses gVisor:
>

apiVersion: v1
kind: Pod
metadata:
 name: nginx-gvisor
spec:
 runtimeClassName: gvisor
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80

kubectl apply pply -f gvisor-runtime-class.yaml

kubectl apply pply -f nginx-gvisor-pod.yaml
Executing the 'dmesg' command inside the container does not show more information because system calls are restricted by gvisor.

 31
 Auditing

1
2

3

4

Container d

Pod

nginx-gvisor

runsc(gvisor)

—
>

——>

Kubelet—>
runtimeClassName: gvisor

runc

——>

Pod
App process

SANDBOX

System Calls

Kernel

User Space

Kernel Space

|
|
|
|
|

|
|
|

Container d

runc runsc(gvisor)

—
>

——>

——>

Kubelet

Network policy

PodSelector: This rule selects a specific set of
pods to apply the policy to based on their labels.

NamespaceSelector: This rule selects all the pods
in a specific namespace to apply the policy to.

ExternalEntities: This rule allows you to define specific IP addresses
or IP ranges that are allowed to communicate with the selected pods

Ports filed allows you to specify the ports and protocols that
are allowed for incoming or outgoing traffic.

 Please note that in order to use Network Policies, you must have a CNI (Container Network Interface) that supports them, such as Calico or Weave Net.

Allow ingress traffic from pods in the same namespace
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-policy-namespace
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: ms-exporter
 namespaceSelector:
 matchLabels:
 ns: monitoring
 ports:
 - port: 3306

Allow ingress traffic from pods in a different namespace

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: traefik-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: traefik
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 172.18.0.0/24
 egress:
 - to:
 - podSelector:
 matchLabels:
 role: django

specifies that the policy only applies to ingress traffic

The "ingress" section specifies the traffic rules that govern
inbound traffic to the selected pods. Specifically, it permits
traffic from pods labeled with "role: django" to access the
selected pods on TCP port 3306.

This selects the pods to which the NetworkPolicy applies.
In this case, it matches all pods with the label role: db

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-policy
spec:
 podSelector:
 matchLabels:
 role: db
 policyTypes:
 - Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: django
 ports:
 - protocol: TCP
 port: 3306

This rule only allows inbound traffic from pods labeled
"role: ms-exporter" in the "ns: monitoring" namespace.
Incoming traffic is limited to port number 3306

specifies that the policy applies to both Ingress and Egress traffic
specifies that pods with the label "app: traefik" can only
receive traffic from the IP block "172.18.0.0/24" and
can only send traffic to pods with the label "role: django".

Security Context
SecurityContext is a configuration object that defines the security settings for a Pod or a specific container within a Pod. It allows you to set the access control and security-related
properties for the containers, including their file system, users, and groups, as well as the capabilities and privileges of the processes running inside the containers.
SecurityContext object can be defined at the Pod level or at the container level, using the securityContext field in the Pod or container specification

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 securityContext:
 runAsUser: 1000
 runAsGroup: 2000
 fsGroup: 3000
 readOnlyRootFilesystem: true

container will run as the user ID 1000, the group ID 2000, and
have its filesystem owned by the group ID 3000. Additionally,
the container's root filesystem will be read-only, which can help to
improve security by preventing changes to critical system files.

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 securityContext:
 privileged: true

the privileged field is set to true, which means
that the container will run in privileged mode

the capabilities field is used to specify the Linux capabilities that the
container is allowed to use. Here, the container is allowed to use the
NET_ADMIN capability, but is not allowed to use the CHOWN capability.

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 drop:
 - CHOWN
 allowPrivilegeEscalation: false

Additionally, the allowPrivilegeEscalation field is set to false,
which means that the container is not allowed to escalate
privileges beyond what is specified in the SecurityContext object

Image security

 32

trivy k8s --namespace=kube-system --report=summary deploy
Summary Report for minikube

Workload Assessment
┌─────────────┬───────────────────────────┬───────────────────┬────────────────────┬───────────────────┐
│ Namespace │ Resource │ Vulnerabilities │ Misconfigurations │ Secrets │
│ │ ├───┬───┬───┬───┬───┼───┬───┬───┬────┬───┼───┬───┬───┬───┬───┤
│ │ │ C │ H │ M │ L │ U │ C │ H │ M │ L │ U │ C │ H │ M │ L │ U │
├─────────────┼───────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼────┼───┼───┼───┼───┼───┼───┤
│ kube-system │ Deployment/metrics-server │ │ │ │ │ │ │ │ 2 │ 8 │ │ │ │ │ │ │
│ kube-system │ Deployment/coredns │ │ 1 │ │ │ │ │ 1 │ 3 │ 5 │ │ │ │ │ │ │
│ kube-system │ Deployment/logviewer │ 2 │ │ │ │ │ │ │ 4 │ 11 │ │ │ │ │ │ │
└─────────────┴───────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴────┴───┴───┴───┴───┴───┴───┘
Severities: C=CRITICAL H=HIGH M=MEDIUM L=LOW U=UNKNOWN

Development lifecycle

Develop

Test

Deploy

Iterate

Scan Git repository
Scan third party libraries

Scan filesystems
Scan container image

Scan base image
Scan Dockerfile

Scan kubernetes Manifest

Scan running in-cluster kubernetes workloads

Observe

Trivy is a simple and comprehensive vulnerability scanner for containers. It's used to identify vulnerabilities in operating system packages (Alpine, Red Hat Universal Base Image, CentOS, etc.) &
application dependencies (Bundler, Composer, npm, yarn, etc.). It's especially useful in the Kubernetes (k8s) environment for scanning container images and ensuring your workloads are secure.
Here's how Trivy can be integrated into different stages of Kubernetes deployment:
Pre-deployment Scanning:
Before deploying your workloads, you can use Trivy to scan various resources for vulnerabilities and misconfigurations. Here are some common use cases:
Third-party Libraries: Scan your application's
dependencies and libraries for known vulnerabilities.

Container Images: Scan container images for vulnerabilities in the
underlying operating system packages and application dependencies

Git Repositories: Analyze your code repositories for
secrets, sensitive information, or other security issues.

You can use the Trivy CLI on your local machine or integrate Trivy into your CI/CD pipeline to perform these pre-deployment scans. Trivy will provide you with a list of vulnerabilities
and misconfigurations to address before deploying your workloads

Continuous Scanning of Running Workloads:
After deploying your workloads to Kubernetes, it's essential to set up automated and continuous scanning to detect vulnerabilities in your running workloads.
Here are the recommended features for this stage:

Trivy K8s Command: Use the trivy kubernetes command to scan Kubernetes Deployments
or Namespaces. Trivy will scan the container images used by the running Pods and provide
vulnerability reports

Trivy Operator: Deploy the Trivy Operator in your Kubernetes cluster. The Trivy Operator
automates the scanning of running workloads by continuously monitoring and scanning
container images within the cluster

Network policies are like firewall rules for your Kubernetes pods. By default, pods are non-isolated and can accept traffic from any source. When you apply a NetworkPolicy to a pod, that pod becomes isolated
and only allows traffic that is permitted by the policy. There are several types of Network Policy rules that can be defined in Kubernetes:

Policies are namespace scoped Policies are applied to pods using label selectors

Policy rules can specify the traffic that is allowed to/from pods, namespaces, or CIDRs

Policy rules can specify protocols (TCP, UDP, SCTP), named ports or port numbers

feature
s

features
>

If no Kubernetes network policies apply to a pod, then all traffic to/from the pod are allowed (default-allow). If one or more k8s
network policies apply to a pod, then only the traffic specifically defined in that network policy are allowed (default-deny)

Network Policy is a Kubernetes feature that allows you to define rules for ingress and egress traffic between pods inside a cluster. It's a way to implement security and access control at
the network level by specifying which pods can communicate with each other, using labels to identify the target and source pods.

Pod

app
Django

Pod

webserver

Pod

Prometheus

—>————————>

<————————<—
Ingress

Egress

Egress

Ingress Egress

Ingress

—>——————————————
<————————<——————————————————>

————————<—|
|
|
|
|
|

|
|
|
|
|
|
| > >

incoming traffic from other pods or
external sources to the target pod

outgoing traffic from the target pod to
other pods or external destinations

 refers to

User

—————>
Ingress

Svc.

Svc

Secret
dGlnZHajsurnJa
huNrux8dmxhUd4
NbvvE4s09sdej3
mdMkspAXI6cGFz
czEyMzQ

Pv
size: 20Gi
IOPS: 4

|
|

|
| Mount

 Monitoring namespace ns: monitoring

HA

|
|

172.18.10.10

app: traefik

Request response Request response Request response
Pod

db—>——————————>

<——————————<—

Ingress

Egress

|
|
|
|
|
|
|

|
|
|
|
|
| > >

Ingress Egress

role: db
Request response

Request response

Pod

Mysql-exporter
role: ms-exporter

 refers to
Network policies are applied to pods rather than services because pods are the network endpoints
that actually receive the traffic. Services are not network endpoints and do not receive traffic
directly. Instead, they route traffic to the appropriate pods based on their labels.

 33Gatekeeper
Kubernetes provides admission controller webhooks as a mechanism to decouple policy decisions from the API server. These webhooks intercept admission requests before
they are persisted as objects in k8s, allowing custom logic and policies to be enforced. Gatekeeper was specifically designed to facilitate customizable admission control
through configuration, rather than requiring code changes. It brings awareness to the overall state of the cluster, going beyond evaluating a single object during admission.
Gatekeeper integrates with Kubernetes as a customizable admission webhook. It leverages the Open Policy Agent (OPA), which is a policy engine hosted by the Cloud Native
Computing Foundation (CNCF), to execute policies in cloud-native environments.

To enforce a policy where all Pods must have resource limits and requests set using Gatekeeper, you would create a ConstraintTemplate and then a Constraint using that template.
Here's how you can do it:

Create a ConstraintTemplate, which defines the schema and the Rego logic for the policy.
The ConstraintTemplate specifies that the Pods must have resource limits and requests

Create a Constraint based on the ConstraintTemplate you defined. The Constraint specifies the name
and the kind of resources to which the policy applies

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRequiredResources
metadata:
 name: pod-must-have-limits
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]

After applying the Constraint, any new Pods that do not have resource limits and requests will be
rejected by the Gatekeeper admission webhook. Existing pods will not be affected by this policy

this ConstraintTemplate is defining a constraint that requires all containers in Kubernetes resources to have resource limits defined. If any container
violates this constraint, Gatekeeper will prevent the resource from being created or modified.

Enforcing Resource Limits and Requests for Pods using Gatekeeper

When a user tries to create/update a resource in the cluster, the request first goes to the
gatekeeper (as an admission webhook). Gatekeeper checks if the resource satisfies all the
defined constraints and rejects the request if any policy is violated

Constraint Templates are Kubernetes Custom Resource Definitions (CRDs) that define a set of constraints or policies that
can be applied to Kubernetes objects. They act as a template or blueprint for creating individual Constraints. A Constraint
Template defines the structure, parameters, and validation rules for a specific type of constraint that can be applied to
Kubernetes resources.Constraint Templates allow you to define reusable policies that can be applied to multiple resources
across your cluster. They provide a way to centralize and standardize the enforcement of constraints

Constraints are instances of Constraint Templates. They are created based on the defined template and applied to specific Kubernetes resources.
Constraints enforce policies by validating the resources against the defined rules and conditions in the Constraint Template. If a resource violates
any of the defined constraints, it is considered non-compliant

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: k8srequiredresources
spec:
 crd:
 spec:
 names:
 kind: K8sRequiredResources
 validation:
 openAPIV3Schema:
 properties:
 resources:
 type: array
 items: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredresources

 violation[{"msg": msg}] {
 container := input.review.object.spec.containers[_]
 not container.resources.limits.memory
 msg := sprintf("container <%v> has no memory limit", [container.name])
 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.containers[_]
 not container.resources.limits.cpu
 msg := sprintf("container <%v> has no CPU limit", [container.name])
 }

The first violation rule checks whether a container in the input resource's specification (spec) has defined memory resource limits. If there are no memory
resource limits defined, it generates a violation with a message indicating that the container lacks memory resource limits.

1 2

3

Admission control

Gatekeeper

OPA >

>

Query

————————————
———————————————————————

Constraint Templates Constraints

Constraint Templates CRD Constraints CRD

|
|

|
|
|

Deploy

Pod Ingress

Service

Kubernetes objects

…
Watch/replicate

——

 Storage
In Kubernetes, containers are typically considered to be ephemeral and immutable, meaning that they are designed to be short-lived and replaceable. This approach is well-suited
for stateless applications that don't store or modify persistent data, but it can be challenging for stateful applications that require persistent storage.
To address this challenge, Kubernetes provides various ways to persist data, ranging from simple to complex solutions. Here are some of the approaches to persist data in k8s.

EmptyDir volumes:
EmptyDir volumes are a type of temporary storage volume that are created and attached to a Pod when the Pod is created. The data stored in an EmptyDir volume exists only for the
lifetime of the Pod and is deleted when the Pod is deleted. These volumes are commonly used for storing temporary data that is needed by a Pod, such as cache files or temporary log

HostPath volumes:
HostPath volumes allow you to mount a directory from the host node's filesystem into a Pod.
This approach is useful for testing and development purposes, but it is not recommended for
production environments as it can create security risks

ConfigMaps and Secrets:
ConfigMaps and Secrets are Kubernetes objects that allow you to store configuration data and sensitive information such as
credentials and keys, respectively. They can be mounted as volumes in a Pod, allowing the Pod to access the data as files

Persistent Volumes (PVs) and Persistent Volume Claims (PVCs):
 PVs are independent storage volumes that can be provisioned from different storage providers such as cloud storage or on-premise storage systems, and PVCs are used to request
storage resources from the PVs. The PVs and PVCs allow you to abstract the underlying storage infrastructure from your application, providing a layer of indirection. You can use
PVs and PVCs to store data persistently, even if a Pod is deleted or restarted. PVs and PVCs can be used with different storage backends like NFS, iSCSI, Ceph, etc

ReadWriteOnce (RWO): This access mode allows the volume to be mounted as read-write by a single node in a
cluster. This means that the volume can be mounted by only one pod at a time, and is typically used for storage
resources that can only be accessed by one node or pod at a time, such as local storage or block storage.

ReadOnlyMany (ROX): This access mode allows the volume to be mounted as read-only by multiple nodes in a
cluster. This means that the volume can be mounted by multiple pods at the same time, but cannot be modified.
This mode is typically used for shared read-only storage resources, such as configuration files or static data
ReadWriteMany (RWX): This access mode allows the volume to be mounted as read-write by multiple nodes in a
cluster. This means that the volume can be mounted by multiple pods at the same time, and can be modified. This
mode is typically used for shared read-write storage resources, such as file shares or databases

>

>

>

accessModes is a field that is used to specify how the volume can be mounted and accessed by a pod

Retain: The PV's contents are retained even after the PV is released. This means that the PV can be reused by
creating a new PVC that requests the same storage capacity and access modes as the original PVC that used the PV

Delete: The PV's contents are deleted when the PV is released. This means that the PV cannot be reused by creating
a new PVC that requests the same storage capacity and access modes as the original PVC that used the PV

Recycle (deprecated): The PV's contents are deleted when the PV is released, but the PV is made available
for reuse. However, this value is deprecated and should not be used in newer versions of Kubernetes

>

>

>

The persistentVolumeReclaimPolicy determines what happens to the contents of a Persistent
Volume (PV) when it is released, specifying whether the contents should be retained or deleted

/var/uploads /app/uploads
>>

Host node's filesystem

Pod

user-uploads

One important thing to note about HostPath volumes is that they are only accessible
from the node where the pod is running. This means that if the pod is rescheduled to a
different node, it will not have access to the files on the original node's filesystem. Also, if
multiple pods are scheduled on the same node and they use the same HostPath volume,
they will be able to read and write to the same files on the host node's filesystem

type field specifies that the directory should be created if it doesn't already exist

 We are creating a HostPath volume named user-uploads that
maps to the /var/uploads directory on the host node's filesystem

 We then mount the user-uploads volume to the container's /app/uploads
directory using the volumeMounts field in the container specification. This
allows the web application to access the user-uploaded files stored in the
/var/uploads directory on the host node's filesystem

apiVersion: v1
kind: Pod
metadata:
 name: web-app
 namespace: dev
spec:
 containers:
 - name: web-app
 image: my-web-app-image
 volumeMounts:
 - mountPath: /app/uploads
 name: user-uploads
 volumes:
 - name: user-uploads
 hostPath:
 path: var/uploads
 type: DirectoryOrCreate

1

2

When you define an EmptyDir volume, you can specify a size limit for the
volume. If you don't specify a limit, the application running in the pod can
generate any amount of data, which can cause the disk to become full and
potentially cause the node to become unavailable

EmptyDir volume can be configured to store its data in memory instead of on disk.
This provides faster access to the data in the volume, which can make it useful for
caching data that needs to be accessed frequently

apiVersion: v1
kind: Pod
metadata:
 name: ML-app
spec:
 containers:
 - name: video-conv
 image: video-conv
 volumeMounts:
 - name: cache-volume
 mountPath: /var/cache/data
 volumes:
 - name: cache-volume
 emptyDir:
 medium: Memory
 sizeLimit: 1Gi

apiVersion: v1
kind: Pod
metadata:
 name: monitoring-pod
spec:
 containers:
 - name: monitoring-container
 image: monitoring-image
 volumeMounts:
 - name: logs-volume
 mountPath: /var/log/monitoring-app
 volumes:
 - name: logs-volume
 emptyDir:
 sizeLimit: 1Gi

/var/cache/data directory inside the container is mounted to an EmptyDir volume named cache-volume. The cache-volume volume is
configured with a sizeLimit of 1 gigabyte, which means that it can store up to 1 gigabyte of data in memory during the lifetime of the Pod

The medium field is used to indicate the underlying storage medium for a volume. By setting the medium to
"Memory", the cache-volume volume will be created using the host node's RAM as the storage medium.

Pod

 34

To connect PVs and PVCs to pods, you need to follow these steps:

Mounting the PV to a pod: In the pod's specification, you specify the PVC as a volume source. When the pod is scheduled and
runs, Kubernetes mounts the PV associated with the PVC to a specified path within the pod's filesystem.

Provision a Persistent Volume (PV): As an administrator, you'll define and create a PV object, specifying the storage capacity, access modes, and
other properties. This involves interacting with your underlying storage infrastructure, whether it's local disks, network storage, or cloud storage.

Create a Persistent Volume Claim (PVC): A user or developer creates a PVC object, specifying their desired storage capacity, access
modes, and any additional requirements. The PVC will be used by the pod to request storage.

Binding PVC to PV: Once the PVC is created, Kubernetes matches it with an available PV that meets the requested criteria. The
binding process ensures that the PVC and PV are associated with each other.

kind: PersistentVolume
apiVersion: v1
metadata:
 name: nfs-pv1-40g-rw
spec:
 capacity:
 storage: 40Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: nfs_server_ip
 path: /mnt/nfs_share/pv1-40g-rw
 persistentVolumeReclaimPolicy: Retain

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-pvc-20g
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 15Gi

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 volumeMounts:
 - name: my-volume
 mountPath: /data
 volumes:
 - name: my-volume
 persistentVolumeClaim:
 claimName: nfs-pvc-20g

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|————————————————————|

|

Go to page 18

PVC

PV

PVC

PV PV

StorageClass

Statefulset

Pod

Deployment Deployment

PodPod

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

<

persistentVolumeClaim Volume claim template persistentVolumeClaim

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

PVC

>

|
|
|
|

>

Pvs can be provisioned by an
administrator or dynamically create

Admin

>

>

> Created

PVs have a lifecycle independent of any individual pod,
meaning they can exist even when no pods are using them

PVC is a request for storage by a pod. It is a way for pods to dynamically request a specific amount
and type of storage without having to know the details of the underlying storage infrastructure

>>
cache-volume

/var/cache/data

Pod

RAM

PVs can be provisioned
statically or dynamically

Static provisioning involves manually creating PVs and configuring their properties, such
as storage capacity, access modes, and claimPolicy.(provisioned by an Administrator)

Dynamic provisioning allows Kubernetes to automatically create PV when a PVC
is created. Dynamic provisioning can be implemented using StorageClasses

>

Admin

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

————————————————

—————————————————
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Cluster

————————————>

————————————>

—
—

—
—

—

———————————

—
—

—
—

—

>

File storage
2

exportfs -o rw,sync,no_subtree_check,no_root_squash,size=40g,fsid=0,
sec=sys,anonuid=65534,anongid=65534 k8s-cluster-ip:/mnt/nfs_share/pv1-40g-rw

kind: PersistentVolume
apiVersion: v1
metadata:
 name: nfs-pv1-40g-rw
spec:
 capacity:
 storage: 40Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: nfs_server_ip
 path: /mnt/nfs_share/pv1-40g-rw
 persistentVolumeReclaimPolicy: Retain

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-pvc-20g
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 15Gi

0

exportfs -o rw,sync,no_subtree_check,no_root_squash,size=20g,fsid=0,
sec=sys,anonuid=65534,anongid=65534 k8s-cluster-ip:/mnt/nfs_share/pv2-20g-rw

kind: PersistentVolume
apiVersion: v1
metadata:
 name: nfs-pv1-20g-rw
spec:
 capacity:
 storage: 20Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: nfs_server_ip
 path: /mnt/nfs_share/pv2-20g-rw
 persistentVolumeReclaimPolicy: Retain

————————————>

—
—

—
—

—

Dev

3

To create a Persistent Volume (PV) in Kubernetes from an existing
NFS volume, you first need to create an NFS export on the NFS
server that will make the volume available to the Kubernetes cluster>

1

Persistent Volumes (PVs) that fit NFS volumes are created
by the cluster administrator on the Kubernetes cluster.

>

When you create a PV that uses an NFS volume, the PV connects to
the NFS server and uses it as the backend storage for the PV

To use persistent storage in their Pod, the user can run the kubectl get pv command to view the available PV3
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
nfs-pv1-20g-rw 20Gi RWX Retain Available nfs 1d
nfs-pv1-40g-rw 40Gi RWX Retain Available nfs 1d

In order to use one of these PVs for persistent storage in a Pod, we can create a Persistent Volume Claim (PVC)
that requests storage from the desired PV

 Once the PVC is bound to the PV, we can mount the PV to the
Pod by including it as a volume in the Pod definition file.
4

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: my-image
 volumeMounts:
 - name: my-volume
 mountPath: /data
 volumes:
 - name: my-volume
 persistentVolumeClaim:
 claimName: nfs-pvc-20g

When the Pod is created, Kubernetes will use the bound PVC named nfs-pvc-20g as
a volume mount point to access the persistent storage associated with the bound PV.
The volumeMounts section in the Pod specification specifies that the volume should be
mounted at the path /data within the container, so any data written to that path will be
stored persistently in the PV.

If Pod is deleted and then rebuilt with the same PVC, it will be connected to the same persistent volume, and any data
that was previously stored in the volume will still be accessible. However, if the PVC is deleted, any data stored in the
associated persistent volume will be lost, and the Pod that was using that PVC will no longer be able to access the
data. This is because deleting a PVC deletes the binding between the PVC and the PV, which causes the PV to be
released and potentially recycled for use by other PVC

 Each PV can be bound to only one PVC at a time , because when a PVC is created,
Kubernetes will try to find an available PV that matches the PVC's requirements based
on capacity, access mode, and storage class. If a suitable PV is found, the PVC is bound
to that PV, and the PV becomes unavailable for other PVCs to

>

storage classes act as an abstraction layer on top of PVs, allowing you to define a
set of default parameters and policies that are used when dynamically provisioning
new PVs based on PVC requests

When a PVC is created, it specify a StorageClass to use, which will dictate how the PV is provisioned.
If no StorageClass is specified, the default StorageClass will be used (if one is defined)

The provisioner field in a StorageClass specifies the name of the provisioner that should be
used to provision the storage. There are many different provisioners available for different
types of storage, including those for cloud providers like GCE, AWS, and Azure.

1

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gce-pd-storage
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 replication-type: none
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: Immediate

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: my-pvc
spec:
 storageClassName: gce-pd-storage
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

<

<

The storageClassName field in the PVC specification is used to specify the name of
the StorageClass that should be used to provision the requested storage

>

>

2 Kubernetes first tries to find an existing PV that matches the criteria specified in the PVC. If no suitable PV is
found , Kubernetes requests the provisioner mapped to the PVC's storage class to create a new volume. The
storage provisioner can be a plugin or a driver that interfaces with the underlying storage system

The storage provisioner creates a new PV that matches the PVC's requirements, such as
size, access mode, and storage class

.

Sc storage provisioner:gce
Pv
size: 10
IOPS: 4

3

Once the new PV is created, Kubernetes binds it to the PVC and the PVC is ready to be used
by a Kubernetes pod. The pod can then mount the volume and use it to store and retrieve data

4

This accessMode don’t allow multiple pods to read and write to the same PVC simultaneously.>

>

 35

Finalizers

live

kubectl create

deletion

empty finalizer
Key

finalization

kubectl delete

remove finalizer key

registry delete

delete

if deletion will not be complete we can
edit the object and remove the finalizer

finalizers are markers attached to resources (such as pods, services, or deployments) to indicate that
some additional cleanup or finalization steps need to be performed before the resource can be fully
deleted. Finalizers are represented as strings and are stored in the metadata of the resource

When you attempt to delete an object in Kubernetes that has a finalizer associated with it,
the object will remain in the finalization phase until the controller responsible for managing
that object removes the finalizer keys or until the finalizers are explicitly removed by a user.

Some common finalizers you’ve likely encountered are:
kubernetes.io/pv-protection
kubernetes.io/pvc-protection
The finalizers above are used on volumes to prevent accidental deletion

Admin

Persistent Volume Claims
(PVCs)

PVC
size: 10Gi, IOPS: 4

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

————————————————

—————————————————
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Cluster

————————————>

—
—

—
—

—
—

———————————

—
—

—
—

—

———————————

—
—

—
—

—
—

gce storage provisioner

1 2

3

4
Dev

Persistent Volumes(PVs)

.

Sc

storage provisioner:ceph

Pv
size: -
IOPS: -

.

Sc

storage provisioner:gce

Pv
size: -
IOPS: -

>

ceph storage provisioner

Persistent Volume Claims
(PVCs)

PVC
size: 15Gi, IOPS: 4

Persistent Volumes(PVs)

Pv
size: 40Gi
IOPS: 4

—
—

—
—

—
—

4

Pv
size: 20Gi
IOPS: 4

 StatefulSet

Consider an example of a stateful application - a database. Databases are typically stateful, meaning they require persistent storage to store their data. They also require stable
network identities to ensure that client applications can consistently connect to the same instance of the database, If you deploy a database using a regular Deployment or RS,
Kubernetes will create multiple replicas of the database, each with its own randomly assigned hostname and IP address. This can cause problems for the database, as the client
applications may not be able to connect to the correct instance of the database, or data may be lost when pods are deleted or recreated. To solve these problems, you can use a
StatefulSet to manage the deployment and scaling of the database.

Why do we need StatefulSets?

 Important
Characteristics of sts

Predictable pod name:
 In a StatefulSet, each Pod is assigned a predictable name based on the name of the StatefulSet and its index.
For example, if the StatefulSet is named "webapp" and has three replicas, the Pods will be named "webapp-0,"
"webapp-1," and "webapp-2." This allows for easy identification and reference to specific Pods within the Set

Fixed individual DNS name:
StatefulSets also provide a fixed individual DNS name for each Pod, based on the predictable name assigned to it. This allows

applications to refer to each Pod by a consistent DNS name, even if the Pod is rescheduled to a different node. For example, if the
StatefulSet is named "webapp," and the Pod is named "webapp-0," the DNS name for that Pod will be "webapp-0.webapp

Ordered Pod creation:
StatefulSets ensure that Pods are created in a specific order, with each Pod waiting for the
previous one to be ready before starting. This is particularly important for stateful applications
that require specific sequencing of events, such as database clusters

Headless service:
 StatefulSets are accompanied by a headless service, which allows for direct communication with

individual Pods rather than the Service as a whole. This is useful for stateful applications that
require direct communication between Pods, such as database clusters.

Headless service
A Headless Service is a type of Kubernetes service that does not have a ClusterIP assigned to it. Instead, it manages the Domain Name System (DNS) records
directly. This means that when a client tries to connect to a Pod that is part of the Headless Service, it can use the DNS name associated with the Pod's IP
address to directly communicate with the Pod. When used with StatefulSets, it allows addressing each Pod individually using their stable hostnames.

 Regular service provides a single IP address that represents a group of Pods, while a
Headless Service provides individual DNS names and IP addresses for each Pod in the service

 Regular services are typically used for stateless applications that can handle traffic from multiple clients, while
Headless Services are more commonly used for stateful applications that require direct access to individual Pods

>

>

 Headless services can be used in combination with regular services to provide both direct access to individual pods
and load-balanced access to the service as a whole. For example, you might use a headless service to allow database
nodes to communicate directly with each other, while also exposing a regular service for client applications to connect to

>

StatefulSets are a type of workload object in Kubernetes that are used to manage stateful applications. They are designed to handle applications that require unique identities,
stable network addresses, persistent storage ,ordered deployment and scaling, and graceful deletion. Such as databases, message queues, etc. StatefulSets maintain a sticky
identity for each pod, so even if a pod gets rescheduled, it still maintains the same identity/name. The pods are created from the same spec, but are not interchangeable - each
has a unique persistent ID.

Pods are deployed in order from 0 to N-1, and terminated in reverse order from N-1 to 0.

 Regular service has a virtual Service IP that exists as iptables or ipvs rules on each node. A new connection to this service IP is then routed with
DNAT to one of the Pod endpoints, to support a form of load balancing across multiple pods.A headless service (that isn't an ExternalName) will create
DNS A records for any endpoints with matching labels or name. Connections will go directly to a single pod/endpoint without traversing the service rules.

>

 36

.

StatefulSet

Dns-name

Each Pod has a stable hostname based on its ordinal index

webapp-0 webapp-1

webappwebapp-0.webapp webapp-1.webapp

<statefulset-name>-<ordinal-index>

webapp-0
10.244.83.193 10.244.83.194 10.244.83.195

.

StatefulSet

webapp-1 webapp-2

webapp

webapp-0
10.244.83.193 10.244.83.194 10.244.83.195

.

StatefulSet

webapp-1 webapp-2

webapp

10.244.83.196

webapp-3

hs-web

webapp-0

webapp-1

10.244.83.193

10.244.83.194
10.244.83.193
10.244.83.194

nslookup
app-service

———> ———>

———>

|
|
|

————

————app: webapp

—
—

—
—

—

Selector
|
|
|

app: webapp

app: webapp

podname.headless-servicename.namespace .svc.cluster-domain

webapp-0.hs-web.default.svc.cluster-domain

webapp-1.hs-web.default.svc.cluster-domain

app-service

app-0

app-1

app-2

10.244.83.194
10.244.83.193
10.244.83.194
10.244.83.195

nslookup
app-service

———>

——————————>

——————>

——————>

|
|
|
|
|

|
|
|
|
|

————

————app: nginx

—
—

—
—

—
Selector

—
—

Label

Headless-StatefulSet

<statefulset-name>-<ordinal-index>

When a client sends traffic to a Headless Service, Kubernetes returns the IP addresses of all the Pods that are backing the
service, regardless of their status. This means that the client may receive IP addresses for Pods that are not running or are in a
failed state. The client is then responsible for load-balancing the traffic across the individual Pod IP addresses that are returned

Headless service does not have
a DNS name or an IP address

-- -- -- --

apiVersion: v1
kind: Service
metadata:
 name: app-service
spec:
 ports:
 - port: 3306
 selector:
 app: mysql
 clusterIP: None

. app

Headless

app: nginx

app: nginx

app: nginx

10.244.83.193

10.244.83.195

app: nginx

ClusterIp service has a unique IP
address and DNS name

10.102.156.115nslookup
app-service

———>

.

app-8k6ar7ye4p-ag7ha

app-8k6ar7ye4p-nik91

app-8k6ar7ye4p-a4nk2

10.244.83.193

10.244.83.194

10.244.83.195

.

—
—

—
—

—

Selector

—
—

Label

ClusterIP-Deployment

<pod name>-<Replicaset random id>-<pod random id>

When a client sends traffic to the service, Kubernetes chooses one of the Pods based on a load-balancing algorithm.
Regular services use a ClusterIP address to load-balance traffic across the Pods that are backing the service

10.102.156.115
app-service

app: nginx
>

>

>

ClusterIp

app

app: nginx
app: nginx

app: nginx

app: nginx

app: nginx

app-8k6ar7ye4p

Headless-ClusterIP -StatefulSet

app-service

app-0

app-1

app-2

10.244.83.194

——————————>

——————>

——————>

|
|
|
|
|
|

|
|
|
|
|

————

————app: nginx

—
—

Label

<statefulset-name>-<ordinal-index>

. app

app: nginx

app: nginx

app: nginx

10.244.83.193

10.244.83.195

app: nginx

-- -- -- --

10.102.156.115
app-service

app: nginx

ClusterIp

 >

 >

 >

Statefulset B

Pod
Template

persistentVolume
Claim

Pod B-0

Pod B-1

Pod B-2

———————————————————————————

Pvc B

PV
|
|
|
|
||

>

>

>

>

>

>

StatefulSets can use two types of storage

Shared Storage Dedicated Storage
Each Pod gets its own PersistentVolume. Data is isolated between Pods.
Good for databases, unique files etc.
Don't specify volumeClaimTemplates. StatefulSet will create a PVC for each Pod
Updating Pods is harder with dedicated storage, may need to coordinate Pod termination to avoid data loss.

All Pods in the StatefulSet share the same storage volume. Data is available to all Pods.
Good for things like caches, tmp files etc.
Specify a PersistentVolumeClaim template in the sfs spec. All Pods will get a clone of this PVC.
data can be corrupted if multiple Pods write to the same files

——

|
|
|
|

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mysql
spec:
 serviceName: mysql-hs
 replicas: 3
 selector:
 matchLabels:
 app: mysql
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - name: mysql
 image: mysql:latest
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "yourpassword"
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pvc

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mysql-hs
spec:
 selector:
 matchLabels:
 app: mysql
 serviceName: mysql
 replicas: 3
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - name: mysql
 image: mysql:latest
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: root-password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-shared-storage
 mountPath: /var/lib/mysql
 volumeClaimTemplates:
 - metadata:
 name: mysql-shared-storage
 spec:
 accessModes: ["ReadWriteMany"]
 storageClassName: google-storage
 resources:
 requests:
 storage: 10Gi

serviceName field specifies the name of the Headless Service that controls
the network identity of the StatefulSet's Pods and it is a mandatory filed

The "volumeClaimTemplates" field in a StatefulSet is used to define persistent volume claims (PVCs)
that will be used by the pods in the set for their storage needs. When a pod is created or rescheduled,
it will automatically create/claim one of these PVCs and use it for its persistent storage

apiVersion: v1
kind: Service
metadata:
 name: mysql-hs
spec:
 ports:
 - port: 3306
 selector:
 app: mysql
 clusterIP: None

Pod template

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pvc
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: manual
 resources:
 requests:
 storage: 1Gi

apiVersion: v1
kind: PersistentVolume
metadata:
 name: mysql-pv
 labels:
 type: local
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 storageClassName: manual
 nfs:
 path: /srv/nfs/kubedata/pv3
 server: 192.168.49.1

<———

k get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS AGE
persistentvolume/mysql-pv 1Gi RWM Retain Bound default/mysql-pvc manual 5h27m

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/mysql-pvc-sts3 Bound mysql-pv 1Gi RWM manual 5h29m

The volumeMounts and volumes are defined in the pod template
section of the StatefulSet manifest, which means that they will be
shared by all pods created by the StatefulSet

The PVC must be created beforehand either
manually or through some automated process

The PV and PVC are using the "manual" StorageClass. The PVC
has requested a capacity of 1Gi and has been bound to the PV.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: google-storage
provisioner: kubernetes.io/gce-pd
….

volumeClaimTemplates is specified at the StatefulSet level, not in the pod template

If you set the storageClassName to the name of a StorageClass that is
configured with a dynamic provisioner, Kubernetes will automatically create a
new PV based on the specifications defined in the volumeClaimTemplates section

 37

Statefulset A

Pod
Template

Volume claim
template

Pod A-0

Pod A-1

Pod A-2

————————————————————————————————

Pvc A-0

Pvc A-1

Pvc A-2

Persistent Volumes
(PVs)

Pv

Pv

Pv

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
||

>

> >

>

>

> >

>

>

>

>

>

The PersistentVolumeClaims(pvc) will be created from this template
J

-

·

·

-
·

v

V

Helm

An application in Kubernetes typically consists of YAML files that define the k8s resources needed to run the application, such as Deployments, Services, ConfigMaps, and
Secrets. You can deploy the application in Kubernetes manually by creating the YAML files and then using the `kubectl apply` command to create the Kubernetes resources on
the cluster. Alternatively, you can use deployment tools like Kustomize, Helm, or the Helm Operator to automate the deployment process and simplify the creation of the YAML
files. These tools provide a higher-level abstraction for managing Kubernetes resources and can make it easier to deploy and manage complex applications in Kubernetes.

 How to deploy an application in k8s?

Manual Deployment:

This approach can be useful for simple applications or for users who prefer a more hands-on approach,
but it can be time-consuming and error-prone for more complex applications

Manually deploying applications in Kubernetes involves creating YAML files that define the k8s resources needed to run the application, such as deployments, services, and
config maps. You would then use the kubectl apply command to create those resources on the Kubernetes cluster.

My-Application

Pvc

Depoyment

Depoyment Service

IngressSecret

ConfigMap StatfulSet

StorageClass

Service

ServiceAccount Pvc

kubectl apply -f deployment.yml
kubectl apply -f service.yml
kubectl apply -f statfulset.yml
…
kubectl apply -f serviceaccount.yml

Kustomize
Kustomize is a tool for managing k8s manifest files using a declarative approach. It allows you to define a set of base manifests that define the desired state of your Kubernetes
resources, and then apply changes using composition and customization. The basic workflow of Kustomize consists of the following steps:

.
├── base
│ └── deployment.yaml
│ └── service.yaml
│ └── statfulset.yaml
│ └── serviceaccount.yaml
│ └── configmap.yaml
│ └── secret .yaml
│ └── kustomization.yaml
├── dev
 └── kustomization.yaml
├── prod
 └── kustomization.yaml

Create a base directory containing your Kubernetes manifests. This directory represents the
desired state of your application or environment

Define a kustomization.yaml file in the base directory. This file specifies the base resources to
use, as well as any additional resources that should be added, modified, or removed

Create overlay directories for each environment or application variant, if needed. These overlay
directories contain additional resources or modifications to apply on top of the base resources

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- deployment.yaml
- service.yaml
- statfulset.yaml
- serviceaccount.yaml
- configmap.yaml
- secret.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
bases:
- ../base
namePrefix: dev-
patchesStrategicMerge:
- |-
 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: nginx-deployment
 spec:
 replicas: 3

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
bases:
- ../base
namePrefix: prod-
patchesJson6902:
- target:
 kind: Deployment
 name: nginx-deployment
 patch: |-
 - op: replace
 path: /spec/replicas
 value: 5

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 1
 …

We create two overlay directories: dev and prod. Each overlay directory contains
a kustomization.yaml file that specifies the base to use and any patches to apply

This kustomization.yaml file applies a patch to the nginx-deployment resource in
the base directory, and adds a prefix "dev-" to the metadata name of all resources

patchesJson6902 field is used to apply JSON patches, which are a more flexible
and expressive way to modify resources compared to patchesStrategicMerge.

if the original name of the deployment resource is "nginx-deployment", it
will be renamed to "prod-nginx-deployment" in the final set of manifests.

bases specifies the base directory to use, in this case ../base

The patch replaces the replicas field with a value of 5

Helm is a widely-used package manager for Kubernetes that simplifies the deployment and management of applications on a k8s cluster. It enables developers to package their
applications as charts, which are reusable and shareable bundles that contain all the resources required to deploy an application on a Kubernetes cluster. With Helm, users can
easily search for charts, install and upgrade applications, rollback changes, and manage dependencies through a straightforward command-line interface. Additionally, Helm
supports versioning, which allows users to track changes to their applications over time and roll back to previous versions if necessary

Helm uses a packaging format called "charts". A chart is a collection of files that describe a related set of kubernetes resources.For example,
instead of manually creating deployments, services, and other K8s objects, you can package these into a Helm chart. Then, anyone can easily
deploy your application by installing the chart.

Helm chart

A Helm chart typically includes the following files:
Chart.yaml: This is the core file which includes the name, description, and version of the chart. This file is
used by Helm to identify the chart and to provide information to the user when installing or upgrading the chart

Template
Pvc

Depoyment

Depoyment Service

IngressSecret

ConfigMap StatfulSet

StorageClass

Service

ServiceAccount Pvc

chart.yamlvalues.yaml …

values.yaml : This file contains the default values for the chart's parameters. These parameters are used in the templates to
generate the Kubernetes YAML files. The user can override these values during installation or upgrade using the --set flag
or a values file. This file is used to allow users to customize the behavior of the chart without modifying the templates directly.

templates/ : This directory contains the Kubernetes YAML files that define the resources to be deployed. These files are usually written in a templating language
like Go templating or Helm's own template language. The templates can include placeholders for the values defined in the values.yaml file. The templates can also
include logic to conditionally include or exclude resources based on the values of the parameters

helpers.tpl : This file contains reusable snippets of code that can be used in the templates. These snippets can be used to simplify the templates and make them more
readable. For example, a helper function might generate a random password or generate a unique name for a resource.

apiVersion: v2
name: wordpress
description: A Helm chart for deploying
WordPress on Kubernetes
version: 1.0.0
appVersion: 5.8.0
maintainers:
 - name: Your Name
 email: your@email.com

wordpress:
 image: wordpress:5.8.0-php7.4-apache
 imagePullPolicy: IfNotPresent
 replicaCount: 1

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ .Release.Name }}-wordpress
 labels:
 app: wordpress
spec:
 replicas: {{ .Values.wordpress.replicaCount }}
…
 spec:
 containers:
 - name: wordpress
 image: {{ .Values.wordpress.image }}
 imagePullPolicy: {{ .Values.wordpress.imagePullPolicy }}
 ports:
 - name: http
 containerPort: 80
…

The values in this file are used by the templates in the
templates/ directory to generate the k8s YAML files

The template syntax, enclosed in double curly braces ({{ }}),
is used to reference the values specified in values.yaml

To change a value, you can modify the values.yaml file and
then run the helm upgrade command

>>

>>

>>

 38

 deployment.yaml
 service.yaml
 statfulset.yaml
 serviceaccount.yaml
 configmap.yaml
 secret.yaml
 kustomization.yaml

Base
Yamls with common fields
required for all environments Overlays

Yamls with Customization
as per the Environment >

Kustomize

Build customised Manifests for each Environment
—

—
>

Dev cluster Prod cluster

Deploy to dev Deploy to prod

 kustomization.yaml
Dev

 kustomization.yaml
Prod

1

2

3

operator
operator is a method of packaging, deploying, and managing a specific application or workload on a Kubernetes cluster. Operators are essentially Kubernetes controllers that
are designed to automate the deployment and management of complex applications or services
An operator typically consists of custom resources, custom controllers, and a set of Kubernetes objects that are defined to manage the application or workload. The custom
resource is a Kubernetes object that represents the desired state of the application or workload, while the custom controller is responsible for ensuring that the actual state of
the application or workload matches the desired state.

Operators are typically implemented using the Kubernetes Operator SDK, which provides
a set of tools and libraries for building, testing, and deploying operators

Managing stateful applications in Kubernetes can be challenging, but operators are particularly well-suited for
this task. For example, an operator for a database application might automate tasks such as provisioning new
database instances, scaling the database up or down, performing backups and restores, and handling failovers

How to deploy an application such as WordPress from a Helm repository using Helm?

Install the chart:
Once you have customized the values, you can install the chart on your

Kubernetes cluster using the helm install command. to install the WordPress
chart with a release name of my-wordpress, run the following command:

helm repo add bitnami https://charts.bitnami.com/bitnami

Add the WordPress Helm chart repository:
you need to add the WordPress Helm chart repository to your local
Helm installation. You can do this by running the following command:

The Bitnami Helm repository contains a variety of charts for popular
applications like WordPress, MySQL.

Update the Repository
This step ensures that Helm has the latest versions

of all the charts from the Bitnami repository.

helm repo update

Customize the WordPress deployment:
Before deploying WordPress, let's customize some values. The

default configuration can be obtained using the following command:

helm show values bitnami/wordpress

WordPress Helm chart comes with a default values file (values.yaml) which contains all the configuration options. We'll create
a custom values file (values.yaml) to override some of these defaults, and customize the settings according to ours needs

Install Helm: You need to install Helm on your local machine
or on the cluster where you will be deploying the application.
You can follow the official Helm installation guide for your
operating system to install Helm.

Add the Helm chart repository: Add the Helm chart repository
that contains the application you want to deploy using the helm
repo add command. You can specify a name for the repository
and the URL of the repository.

Search for the Helm chart: Use the helm search command
to search for the Helm chart that contains the application
you want to deploy. You can specify the repository name
or search all repositories.

Configure the Helm chart: Create a values.yaml file to
configure the Helm chart. This file contains the values
that will be used to replace the placeholders in the
Kubernetes resource files.

Install the Helm chart: Use the helm install command to install the Helm chart
to the Kubernetes cluster. You can specify the release name, namespace, and
any other required parameters using the command line or a YAML file

Verify the deployment: After the Helm chart has been installed,
you can use kubectl commands to verify that the Kubernetes
resources have been created and are running correctly

Upgrade or rollback the Helm chart: If you need to make changes to the application, you can use
the helm upgrade command to upgrade the Helm chart. If there are issues with the new version,
you can use the helm rollback command to revert to a previous version

Do you want to deploy an application using Helm in Kubernetes? Here are the general steps to follow

The my-wordpress argument is the name of the release that Helm will use to track the installation,
and the --namespace wordpress argument specifies the namespace in which to install WordPress

If you want to customize the installation, you can pass additional parameters to the Helm chart using the --set flag. For
example, you can set a custom password for the WordPress administrator account by running the following command

kubectl create namespace wordpress

helm install my-wordpress bitnami/wordpress --namespace wordpress --set wordpressEmail=admin@example.com

better to create a Kubernetes namespace for your WordPress installation
in order to isolate the resources associated with your WordPress
deployment from other resources running in the same Kubernetes cluster

helm install my-wordpress bitnami/wordpress --namespace wordpress --create-namespace -f values.yaml --set service.type=NodePort

You can customize the values in a Helm chart by using the
--set flag when you install the chart or by creating a
values.yaml file that overrides the default values

>

>

wordpressUsername: myusername
wordpressPassword: mypassword
wordpress:
 persistence:
 size: 20Gi
#mariadb.auth.rootPassword= ROOT_PASSWORD
mariadb:
 auth:
 rootPassword: ROOT_PASSWORD

This command installs WordPress using the values.yaml
file and sets the service.type value to NodePort

values.yaml

Helm uses the Kubernetes
configuration file (usually located at

~/.kube/config) to access the
Kubernetes cluster

>>

 39

1

2

3

helm upgrade [RELEASE] [CHART] [flags]

helm list -n wordpress
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
my-wordpress wordpress 1 2023-07-28 20:40:28.214200542 +03 +03 deployed wordpress-16.1.33 6.2.2

A release is an instance of an application deployed by Helm from a chart

A revision is a versioned change to the release. Each time a release is installed or upgraded, a new revision is created incrementally (rev 1, 2, 3 etc).

releaseName

helm upgrade -f values2.yaml my-wordpress bitnami/wordpress -n wordpress
helm get values my-wordpress --revision=2 -n wordpress
USER-SUPPLIED VALUES:
wordpressPassword: "qazwsx"
wordpressUsername: daniele

helm list -n wordpress
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
my-wordpress wordpress 2 2023-09-26 11:42:00.841703412 +03 +03 deployed wordpress-17.1.6 6.3.1

How to get custom values for a helm release?

helm rollback my-wordpress 1 -n wordpress helm rollback RELEASE_NAME REVISION_NUMBER

Verify the chart:

Upgrade or rollback the chart:

Operator

CRD Controller

Kind: StatefulSet
…

Kind: myapp
…

StatefulSet
Pod

Pod

|
|
|

|
|
|

StatefulSet
Pod

Pod
——> ———>

———>
———>

———>

 operators can definitely help to automate many routine tasks
associated with managing complex applications in Kubernetes, &
this can free up human operators to focus on more strategic tasks

Dev How to scale up a StatefulSet?
How to do leader election in Kubernetes?

How to migrate databases?
..

)

Dev

) OLM

Cluster
——>——> Kube-api

3 Namespace

Sts Pod Svc

SA CM—> Deploy
…

Helm repositories

Helm chart
Wordpress

Helm chart

Helm chart
…

Helm repositories

Helm chart

Helm chart

Helm chart
Helm repositories are collections of

packaged Kubernetes resources,
known as charts

Ingress

Ingress is an API object in Kubernetes that allows access to your Kubernetes services from outside the Kubernetes cluster. It provides load balancing, SSL termination and
name-based virtual hosting for your services, In other words, it's a way for your applications to expose URLs to the outside world.

Ingress provides layer 7 load balancing. It acts as a reverse proxy
and load balances traffic to different services in your Kubernetes
cluster

Ingress provides external reachable URLs, SSL termination and name-based
virtual hosting to services in the cluster. This means you can route requests to
different services based on the request host or path.

Kubernetes only provides the Ingress resource and needs a separate Ingress Controller to satisfy the Ingress. There are several options
available, but for the purpose of this guide, we'll use the Nginx Ingress Controller.Install the Nginx Ingress Controller

How Does an Ingress Controller Work?
Here’s a simplified view of how an Ingress Controller works:

1 You define an Ingress Resource in your cluster, which has a set of routing rules associated with it.
2 The Ingress Controller continuously watches for updates to Ingress Resources , Service, and Endpoints or EndpointSlice objects. When it detects a new or modified these objects, the
controller is notified. it reads the information in these objects to understand what traffic routing changes it needs to make.
3 The Ingress Controller configures the load balancer to implement the desired traffic routing.

 If you use the LoadBalancer service type, the service is made available to clients outside the cluster through a load balancer. This approach is fine if you only need to
 expose a single service externally, but it becomes problematic with large numbers of services, since each service needs its own public IP address.Fortunately, by exposing
 these services through an Ingress object instead, you only need a single IP address.

ingress controller Service

EndpointSlices
Ingress

resources LB/Reverse Proxy

—————————————

—————————————|
|
|
|
|

|
|
|
|
|

The Ingress Controller continuously watches for updates to Ingress Resources, Service, and Endpoints or EndpointSlice objects.

Client

Nginx.conf

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-path
spec:
 rules:
 - host: shop.com
 http:
 paths:
 - path: /video
 pathType: Prefix
 backend:
 service:
 name: video-service
 port:
 name: http
 - path: /wear
 pathType: Prefix
 backend:
 service:
 name: wear-service
 port:
 number: 80

>

>

Service
video-service

Service
wear-service

shop.com/video
shop.com/wear

shop.com/video

shop.com/wear

apiVersion: v1
kind: Service
metadata:
 name: wear-service
spec:
 selector:
 app: wear
 ports:
 - name: http
 port: 80
 targetPort: 8080

The ingress controller uses the service name specified in the ingress rules to lookup the IP addresses of
the pods backing that service. It then routes traffic to those pods according to the path matching rules
defined in the ingress

Ingress resources define rules for routing HTTP/HTTPS traffic to services in a
Kubernetes cluster. They specify path-based rules that map URLs to backend services.

server {
 server_name shop.com ;
 listen 80 ;
 listen 443 ssl http2 ;
 location /video/ {
 set $namespace "default";
 set $ingress_name "shop-ingress";
 set $service_name "video-service";
 set $service_port "http";
 set $location_path "/video";
 …
 }

 location /wear/ {

 set $namespace "default";
 set $ingress_name "shop-ingress";
 set $service_name "wear-service";
 set $service_port "http";
 set $location_path "/wear";
 } }

Ingress object allows you to expose multiple services through a single IP address

Ingress resource is a Kubernetes API object that defines the rules for how external traffic should be directed to services within a
cluster. The ingress resource specifies the rules for routing traffic based on the host name, path, and other criteria. It also specifies
the backend services that should receive the traffic.

Ingress consists of two main components:

Ingress resource is the YAML configuration that defines the rules for routing traffic.

>

> Ingress controller is responsible for implementing the rules defined in the ingress resource and handling external traffic based on
these rules. Ingress controllers like Nginx use ConfigMaps to store the configuration for the ingress resources and dynamically
generate Nginx configuration based on the rules defined in the ingress resource

When an ingress resource is created or updated, the ingress controller reads the configuration information from the
corresponding ConfigMap and generates the configuration for the load balancer based on the rules defined in the ingress
resource. The load balancer configuration is then dynamically updated to reflect the changes in the ingress resource.

1

2

3

kubectl describe ingress ingress-path
Name: ingress-path
Namespace: default
Address:
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 shop.com
 /video video-service:80 (10.1.1.2:5678, 10.1.1.3:5678)
 /wear wear-service:80 (10.1.1.4:5678, 10.1.1.5:5678)
Events: <none>

there is one rule specified for the `shop.com` host, and under that rule, there are two paths
(`/video` and `/wear`) defined for routing traffic to their respective backend services.

How to customize Nginx Ingress Controller?

Helm Chart Values: If deploying the Ingress controller via Helm chart, you can customize settings by overriding chart values. The Helm chart exposes many config settings as values.
ConfigMap: using a ConfigMap to set global configuration in NGINX, For example, you can specify custom log formats, change timeout values, enable features like GeoIP, etc
Annotation: use this if you want a specific configuration for a particular ingress rule.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: shop.com-admin
 namespace: default
 annotations:
 kubernetes.io/ingress.class: "nginx"
 nginx.ingress.kubernetes.io/auth-type: basic
 nginx.ingress.kubernetes.io/auth-secret: shop-basic-auth
 nginx.ingress.kubernetes.io/auth-realm: Authentication Required
spec:
 rules:
 - host: shop.com
 http:
 paths:
 - path: /admin
 pathType: Prefix
 backend:
 service:
 name: management-service
 port:
 name: http

apiVersion: v1
kind: Secret
metadata:
 name: shop-basic-auth
 namespace: default
data:
 auth: YXJ5ZTokYXByMSQxbzAzWElTQiRJVFYudWh0dmcuVmV5d0t5a0s1cC4vCgo=

htpasswd -nbm arye Heisenberg | base64

This example shows how to add authentication in a Ingress rule using a secret that contains a file generated with htpasswd

Generate the base64 encoded user/pass combo:

kubectl create secret generic shop-basic-auth --from-literal=auth=<base64 output>

Convert htpasswd into a secret:

Or

>>

>>

How to enable Basic Authentication for an ingress rule in Kubernetes?

kubectl create secret generic shop-basic-auth --from-literal=username=arye --from-literal=password=Heisenberg

Or

Configure the Ingress rule to use the basic authentication secret1

2

3

kubernetes.github.io/ingress-nginx/examples/

Ingress controllers often include a default backend component that handles traffic
that doesn't match any Ingress rules.

 40

 In order for the Ingress resource to work, the cluster must have an ingress controller running.Unlike other types of controllers which run as part of the kube-controller-manager binary, Ingress controllers are not started automatically with a cluster.
 You have to select an Ingress Controller compatible with your setup and start it manually. (The actual implementation of Ingress is done by Ingress Controllers)

You can find more examples in this link

when configuring an Ingress resource, the "backend" field specifies the service that should receive the forwarded traffic. However, it's important
to note that the traffic never directly reaches the service itself. Instead, controller uses service endpoints to route the traffic, not the service.

Deployment: wear-app

Pod
app: wear

10.1.1.4 10.1.1.5

Pod
app: wear

Deployment: video-app

Pod
app: video

10.1.1.2 10.1.1.3

Pod
app: video

Deployment Video-app

Pod

Statfulset

PodPod

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

——————————————————————

Ingress

Service
(ClusterIP) app: video

app: video

Deployment wear-app

Pod

Service
(ClusterIP) app: wear

app: wear

MySql-0 MySql-1

Service
(Headless) app: mysql

app: mysqlapp: mysql

Selector

Label

———

—————

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|——————————————————————

Proxy Server or
External LB

Ingress controller _____________
Ingress resources Pod

app: wear
Pod

app: wear
Pod

app: video
Pod

app: video

Shop.com

management-service video-service wear-service
———————————————

———————————————|
|
|
|
|

|
|
|
|
|

Authentication Required

Rule >>

Path >>

PodPodPod

/Wear/video/admin

https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md

certbot --manual --preferred-challenges dns certonly -d arye.ir

kubectl create secret tls tls-secret --key privkey.pem --cert cert.pem

openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/CN=arye.ir"

Generate a self-signed certificate and private key:

Create a secret containing the key and certificate:
kubectl create secret tls tls-secret --key tls.key --cert tls.crt

How to enable TLS for an ingress rule in Kubernetes?

Method 1: Self-signed certificate

Method 2: Use Certbot

Use Certbot to generate a TLS certificate for your domain.

Create a Kubernetes secret that contains the private key and the certificate

Method 3: Use Cert-manager

Reference tls-secret secret in your Ingress resource

Cert-manager

Cert-manager is a certificate management controller for k8s. It helps with issuing and renewing certificates from various sources, such as Let's Encrypt, HashiCorp Vault, Venafi.
cert-manager ensures certificates are valid and up to date, and will attempt to renew certificates at a configured time before expiry.

Issuing and renewing certificates from a variety of sources

Automated creation and updating of k8s Secrets with certificates

DNS01 and HTTP01 ACME challenge solver support for Let's Encrypt certificates

Issuing certificates for Ingress resources with annotations

Cert-manager mainly uses two different custom Kubernetes resources (CRDs) to configure and control how it operates, as well as to store state. These resources are Issuers and Certificates.

Issuing certificates for Certificate resources using CRDs

Certificates resources allow you to specify the details of the certificate you want to request. They reference an issuer to define how they'll be issued.

Cluster

Cert-secret

Ingress

Service

2 3

4

5

6

7

1. You create a Certificate resource with details like the domain name, secret name to store certificate, and reference to the Issuer
2. The cert-manager controller sees the new Certificate and kicks off the issuance process
3. cert-manager first checks if the referenced Issuer exists and is valid. The Issuer has the details for the certificate authority
4. cert-manager requests the certificate authority (CA) like Let's Encrypt to issue a certificate for the requested domain
5. The CA validates that you own/control the domain name by performing a challenge. For example, with HTTP challenge, you need to have a temporary file served on the domain
6. Once domain ownership is validated, the CA issues the signed certificate. The certificate is returned to cert-manager
7. cert-manager takes the certificate and creates or updates the Kubernetes secret defined in the Certificate. This secret will contain the certificate and private key.

Issuer is an object that represents a particular certificate authority or a specific method for issuing certificates. It defines the parameters and configurations required to request certificates.
An Issuer can be used to issue certificates within a single namespace or cluster in Kubernetes. There are different types of issuers supported by CertManager, such as:

ACME Issuer: This type of issuer integrates with the Automated Certificate Management
Environment (ACME) protocol, which is commonly used by Let's Encrypt and other CAs.
ACME issuers automate the process of obtaining and renewing certificates.

CA Issuer: This type of issuer is used when you have an existing
certificate authority (CA) that you want to use for issuing certificates.
It requires you to provide the CA's certificate and private key.

Self-Signed Issuer: This type of issuer is used when you want to
generate self-signed certificates within the Kubernetes cluster. It
is typically used for testing or development purposes

It represents a desired state for a certificate and provides a way to request, issue, and renew certificates automatically.

what happens when you create a Certificate resource in cert-manager:

How can I issue a certificate for the domain arye.ir using cert-manager from Let's Encrypt?

Cert-manager uses 'Issuer' or 'ClusterIssuer' resources to represent
certificate authorities. We'll create a 'ClusterIssuer' for Let's Encrypt.

Configure Let's Encrypt Issuer

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: letsencrypt-prod
spec:
 acme:
 # The ACME server URL
 server: https://acme-v02.api.letsencrypt.org/directory
 # Email address used for ACME registration
 email: your-email@your-domain.com
 # Name of a secret used to store the ACME account private key
 privateKeySecretRef:
 name: letsencrypt-prod
 # Enable the HTTP-01 challenge provider
 solvers:
 - http01:
 ingress:
 class: nginx

Issue a Certificate

Create a certificate resource to obtain the certificate
from Let's Encrypt for the specified domain.

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: arye-ir-cert
 namespace: default
spec:
 secretName: arye-ir-tls
 issuerRef:
 name: letsencrypt-prod
 kind: ClusterIssuer
 commonName: arye.ir
 dnsNames:
 - arye.ir
 - *.arye.ir
 duration: 90d

Configure Ingress to Use the Certificate

Your Ingress configuration should use the
secret arye-ir-tls for its TLS configuration

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: arye.ir-ingress
spec:
 tls:
 - hosts:
 - arye.ir
 - *.arye.ir
 secretName: arye-ir-tls
 rules:
 - host: arye.ir
 http:
 paths:
 - pathType: Prefix
 path: "/"
 backend:
 service:
 name: your-service-name
 port:
 number: 80

Validate the Setup

Check if the certificate has
been issued successfully

kubectl describe certificate arye-ir-cert

privateKeySecretRef specifies the name of the Kubernetes secret that will be used to store
the private key for the certificate.

solvers specifies the method for verifying ownership of the domain. In this case, we are using
the HTTP-01 challenge, which involves creating a temporary file in the web root of the domain
and responding to an HTTP request to that file. The ingress field specifies that we will use an
Ingress resource to serve the challenge.

secretName specifies the name of the Kubernetes secret that will be used to store the TLS
certificate and private key.
issuerRef specifies the name and kind of the Kubernetes resource that is used as the issuer for
this certificate. In this case, we are using the previously defined letsencrypt-prod ClusterIssuer
commonName specifies the common name for the TLS certificate. In this case, it is set to arye.ir.

dnsNames specifies the list of DNS names for which the TLS certificate should be issued. In
this case, we are issuing the certificate for arye.ir and all subdomains of the specified domain

—>———>———>— ——>—— —>—

After a few moments, cert-manager should issue a certificate for your domain
and store it in the secret specified in the certificate resource. You can verify that
the certificate has been issued by checking the contents of the secret:

kubectl describe secret arye-ir-tls Data
====
tls.crt: 2316 bytes
tls.key: 1704 bytes

->

main features of
cert-manager

You can configure TLS for Ingress using
annotations instead of Certificate resources

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

——> ———>——>—

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: arye.ir-ingress
annotations:
 cert-manager.io/cluster-issuer: "letsencrypt-prod"
spec:
 tls:
 - hosts:
 - arye.ir
 - *.arye.ir
 secretName: arye-ir-tls
 rules:
 - host: arye.ir
…

cert-manager.io/cluster-issuer: References
the Issuer resource in cert-manager that will
be used to obtain the certificate

• Use annotations for basic, single TLS certificate configuration. Simpler, but less flexible.
• Use Certificate resources for multiple certificates, automation, and advanced management. More complex, but more flexible and powerful

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: selfsigned-issuer
spec:
 selfSigned: {}

this ClusterIssuer can be referenced by other resources like Certificate or
ingress to automatically generate and manage self-signed certificates.

Configure Ingress to Use the Certificate

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-path
 annotations:
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
spec:
 tls:
 - hosts:
 - arye.ir
 secretName: tls-secret
 rules:
 - host: arye.ir
 http:
 paths:
 - path: /booklet
 pathType: Prefix
 backend:
 service:
 name: book-service
 port:
 name: http
…

——————————————>

 41

This YAML manifest describes an Ingress resource that enables TLS for the host
"arye.ir", redirects HTTP traffic to HTTPS, and defines a routing rule for the path
"/booklet" to the backend service named "book-service" on the specified port

You can find more annotations in this link

Name: arye-ir-cert
Namespace: default
Labels: <none>
Annotations: <none>
API Version: cert-manager.io/v1
Kind: Certificate
…
Spec:
 Common Name: arye.ir
 DNS Names:
 arye.ir
 Issuer Ref:
 Group: cert-manager.io
 Kind: ClusterIssuer
 Name: letsencrypt-prod
 Secret Name: tls-secret
Status:
 Conditions:
 Last Transition Time: 2023-09-27T10:01:00Z
 Message: Certificate is up to date and has not expired
…
 Not After: 2024-09-27T10:00:00Z
Events: <none>

 Certificate
Domain:arye.ir
1

ISSUER
type:ACME

Server:Let’s Encrypt

 42
 Add-ons

Kubernetes has a rich ecosystem of add-ons and extensions that provide additional functionality and features to enhance and extend the capabilities of a Kubernetes cluster.
So far, we have covered a few of these add-ons in the booklet. Now, let's introduce some additional add-ons that can further enhance your Kubernetes experience:

Argo CD is a powerful open-source tool designed for Kubernetes, enabling GitOps continuous delivery. It simplifies application deployment and management by utilizing a declarative approach. With Argo CD,
you can define the desired state of your applications using Kubernetes manifests stored in a Git repository. It provides a user-friendly graphical interface to monitor application status, track changes, and roll
back if needed. By following GitOps principles, Argo CD ensures that your cluster's configuration matches the desired state defined in the repository, automatically deploying and updating applications.

Service mesh add-ons, like Istio and Linkerd, are powerful tools that enhance the networking and observability capabilities of microservices within a Kubernetes cluster. By integrating transparently with the
cluster, they offer advanced features for traffic management, security, and distributed tracing. These service mesh solutions enable fine-grained control over traffic routing, load balancing, and fault tolerance
mechanisms, ensuring efficient and reliable communication between microservices. With built-in security features like mutual TLS authentication and encryption, they provide robust protection for service-to-
service communication. Additionally, service mesh add-ons enable comprehensive observability with distributed tracing, metrics collection, and logging, allowing for deep insights into the behavior and
performance of microservices.

Rook and Longhorn are two notable storage-related add-ons for Kubernetes. Rook is a cloud-native storage orchestrator that enables the deployment and management of various storage solutions as native
Kubernetes resources. It automates the provisioning, scaling, and lifecycle management of distributed storage systems like Ceph, CockroachDB, and more. On the other hand, Longhorn is a lightweight, open-
source distributed block storage system built for Kubernetes. It provides reliable, replicated block storage for stateful applications, offering features like snapshots, backups, and volume expansion. Together,
Rook and Longhorn empower Kubernetes users to easily deploy and manage resilient, scalable, and persistent storage solutions within their clusters, enhancing the availability and data management
capabilities of their applications.

Monitoring and logging add-ons, such as Prometheus, facilitate the collection and storage of time-series data and metrics from diverse Kubernetes components and applications, enabling comprehensive
analysis and alerting capabilities. Additionally, Fluentd serves as a dependable log aggregation tool, simplifying the gathering, parsing, and forwarding of logs from multiple sources to ensure centralized and
scalable log management. The ELK (Elasticsearch, Logstash, and Kibana) stack offers a comprehensive solution for monitoring and logging, utilizing Elasticsearch for efficient log indexing and searching,
Logstash for data processing and filtering, and Kibana for visualizing and analyzing log data. Together, these add-ons provide Kubernetes users with powerful tools for monitoring performance, detecting
issues, and gaining valuable insights to optimize their Kubernetes environments.

Additionally, The CNCF landscape is an excellent resource for discovering and exploring a vast array of add-ons and tools within the cloud-native ecosystem. It offers a visual representation of different
projects and categories, allowing users to navigate through various technologies that can enhance their Kubernetes deployments. Whether you're looking for monitoring and observability tools, networking
solutions, or storage options, the CNCF landscape provides a comprehensive overview of the available options. By exploring the CNCF landscape, you can expand your knowledge and make informed
decisions about incorporating the right add-ons and tools into your Kubernetes and cloud-native environments. It's a valuable resource for staying up-to-date with the latest innovations and finding the best
solutions to meet your specific needs.

